判断图是否是无环图

判断一个图是否为无环图:

完整代码

public class Cycle {
    private boolean[] marked;
    private int[] edgeTo;
    private Stack<Integer> cycle;

    /**
     * Determines whether the undirected graph {@code G} has a cycle and,
     * if so, finds such a cycle.
     *
     * @param G the undirected graph
     */
    public Cycle(Graph G) {
        if (hasSelfLoop(G)) return;
        if (hasParallelEdges(G)) return;
        marked = new boolean[G.V()];
        edgeTo = new int[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v])
                dfs(G, -1, v);
    }


    // does this graph have a self loop?
    // side effect: initialize cycle to be self loop
    private boolean hasSelfLoop(Graph G) {
        for (int v = 0; v < G.V(); v++) {
            for (int w : G.adj(v)) {
                if (v == w) {
                    cycle = new Stack<Integer>();
                    cycle.push(v);
                    cycle.push(v);
                    return true;
                }
            }
        }
        return false;
    }

    // does this graph have two parallel edges?
    // side effect: initialize cycle to be two parallel edges
    private boolean hasParallelEdges(Graph G) {
        marked = new boolean[G.V()];

        for (int v = 0; v < G.V(); v++) {

            // check for parallel edges incident to v
            for (int w : G.adj(v)) {
                if (marked[w]) {
                    cycle = new Stack<Integer>();
                    cycle.push(v);
                    cycle.push(w);
                    cycle.push(v);
                    return true;
                }
                marked[w] = true;
            }

            // reset so marked[v] = false for all v
            for (int w : G.adj(v)) {
                marked[w] = false;
            }
        }
        return false;
    }

    /**
     * Returns true if the graph {@code G} has a cycle.
     *
     * @return {@code true} if the graph has a cycle; {@code false} otherwise
     */
    public boolean hasCycle() {
        return cycle != null;
    }

     /**
     * Returns a cycle in the graph {@code G}.
     * @return a cycle if the graph {@code G} has a cycle,
     *         and {@code null} otherwise
     */
    public Iterable<Integer> cycle() {
        return cycle;
    }

    private void dfs(Graph G, int u, int v) {
        marked[v] = true;
        for (int w : G.adj(v)) {

            // short circuit if cycle already found
            if (cycle != null) return;

            if (!marked[w]) {
                edgeTo[w] = v;
                dfs(G, v, w);
            }

            // check for cycle (but disregard reverse of edge leading to v)
            else if (w != u) {
                cycle = new Stack<Integer>();
                for (int x = v; x != w; x = edgeTo[x]) {
                    cycle.push(x);
                }
                cycle.push(w);
                cycle.push(v);
            }
        }
    }

    /**
     * Unit tests the {@code Cycle} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        In in = new In(args[0]);
        Graph G = new Graph(in);
        Cycle finder = new Cycle(G);
        if (finder.hasCycle()) {
            for (int v : finder.cycle()) {
                StdOut.print(v + " ");
            }
            StdOut.println();
        }
        else {
            StdOut.println("Graph is acyclic");
        }
    }


}

 

posted @ 2021-01-20 16:11  wangheq  阅读(105)  评论(0编辑  收藏  举报