ConcurrentHashMap原理
ConcurrentHashMap从JDK1.5开始随java.util.concurrent包一起引入JDK中,主要为了解决HashMap线程不安全和Hashtable效率不高的问题。众所周知,HashMap在多线程编程中是线程不安全的,而Hashtable由于使用了synchronized修饰方法而导致执行效率不高;因此,在concurrent包中,实现了ConcurrentHashMap以使在多线程编程中可以使用一个高性能的线程安全HashMap方案。
而JDK1.7之前的ConcurrentHashMap使用分段锁机制实现,JDK1.8则使用数组+链表+红黑树数据结构和CAS原子操作实现ConcurrentHashMap;本文将分别介绍这两种方式的实现方案及其区别。
1. ConcurrentHashMap的实现——JDK7版本
1.1 分段锁机制
Hashtable之所以效率低下主要是因为其实现使用了synchronized关键字对put等操作进行加锁,而synchronized关键字加锁是对整个对象进行加锁,也就是说在进行put等修改Hash表的操作时,锁住了整个Hash表,从而使得其表现的效率低下;因此,在JDK1.5~1.7版本,Java使用了分段锁机制实现ConcurrentHashMap.
简而言之,ConcurrentHashMap在对象中保存了一个Segment数组,即将整个Hash表划分为多个分段;而每个Segment元素,即每个分段则类似于一个Hashtable;这样,在执行put操作时首先根据hash算法定位到元素属于哪个Segment,然后对该Segment加锁即可。因此,ConcurrentHashMap在多线程并发编程中可是实现多线程put操作。接下来,本文将详细分析JDK1.7版本中ConcurrentHashMap的实现原理。
1.2 ConcurrentHashMap的数据结构
ConcurrentHashMap类结构如上图所示。由图可知,在ConcurrentHashMap中,定义了一个Segment<K, V>[]数组来将Hash表实现分段存储,从而实现分段加锁;而么一个 Segment元素则与HashMap结构类似,其包含了一个HashEntry数组,用来存储Key/Value对。Segment继承了ReetrantLock,表示Segment是一个可重入锁,因此ConcurrentHashMap通过可重入锁对每个分段进行加锁。
1.3 ConcurrentHashMap的初始化
JDK1.7的ConcurrentHashMap的初始化主要分为两个部分:一是初始化ConcurrentHashMap,即初始化segments数组、segmentShift段偏移量和segmentMask段掩码等;然后则是初始化每个segment分段。接下来,我们将分别介绍这两部分初始化。
ConcurrentHashMap包含多个构造函数,而所有的构造函数最终都调用了如下的构造函数:
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } this.segmentShift = 32 - sshift; this.segmentMask = ssize - 1; if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; int cap = MIN_SEGMENT_TABLE_CAPACITY; while (cap < c) cap <<= 1; // create segments and segments[0] Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]); Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] this.segments = ss; }
由代码可知,该构造函数需要传入三个参数:initialCapacity、loadFactor、concurrencyLevel,其中,concurrencyLevel主要用来初始化segments、segmentShift和segmentMask等;而initialCapacity和loadFactor则主要用来初始化每个Segment分段。
1.3.1 初始化ConcurrentHashMap
根据ConcurrentHashMap的构造方法可知,在初始化时创建了两个中间变量ssize和sshift,它们都是通过concurrencyLevel计算得到的。其中ssize表示了segments数组的长度,为了能通过按位与的散列算法来定位segments数组的索引,必须保证segments数组的长度是2的N次方,所以在初始化时通过循环计算出一个大于或等于concurrencyLevel的最小的2的N次方值来作为数组的长度;而sshift表示了计算ssize时进行移位操作的次数。
segmentShift用于定位参与散列运算的位数,其等于32减去sshift,使用32是因为ConcurrentHashMap的hash()方法返回的最大数是32位的;segmentMask是散列运算的掩码,等于ssize减去1,所以掩码的二进制各位都为1.
因为ssize的最大长度为65536,所以segmentShift最大值为16,segmentMask最大值为65535. 由于segmentShift和segmentMask与散列运算相关,因此之后还会对此进行分析。
1.3.2 初始化Segment分段
ConcurrentHashMap通过initialCapacity和loadFactor来初始化每个Segment. 在初始化Segment时,也定义了一个中间变量cap,其等于initialCapacity除以ssize的倍数c,如果c大于1,则取大于等于c的2的N次方,cap表示Segment中HashEntry数组的长度;loadFactor表示了Segment的加载因子,通过cap*loadFactor获得每个Segment的阈值threshold.
默认情况下,initialCapacity等于16,loadFactor等于0.75,concurrencyLevel等于16.
1.4 定位Segment
由于采用了Segment分段锁机制实现一个高效的同步,那么首先则需要通过hash散列算法计算key的hash值,从而定位其所在的Segment. 因此,首先需要了解ConcurrentHashMap中hash()函数的实现。
private int hash(Object k) { int h = hashSeed; if ((0 != h) && (k instanceof String)) { return sun.misc.Hashing.stringHash32((String) k); } h ^= k.hashCode(); // Spread bits to regularize both segment and index locations, // using variant of single-word Wang/Jenkins hash. h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10); h += (h << 3); h ^= (h >>> 6); h += (h << 2) + (h << 14); return h ^ (h >>> 16); }
通过hash()函数可知,首先通过计算一个随机的hashSeed减少String类型的key值的hash冲突;然后利用Wang/Jenkins hash算法对key的hash值进行再hash计算。通过这两种方式都是为了减少散列冲突,从而提高效率。因为如果散列的质量太差,元素分布不均,那么使用Segment分段加锁也就没有意义了。
private Segment<K,V> segmentForHash(int h) { long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u); }
接下来,ConcurrentHashMap通过上述定位函数则可以定位到key所在的Segment分段。
1.5 ConcurrentHashMap的操作
在介绍ConcurrentHashMap的操作之前,首先需要介绍一下Unsafe类,因为在JDK1.7新版本中是通过Unsafe类的方法实现锁操作的。Unsafe类是一个保护类,一般应用程序很少用到,但其在一些框架中经常用到,如JDK、Netty、Spring等框架。Unsafe类提供了一些硬件级别的原子操作,其在JDK1.7和JDK1.8中的ConcurrentHashMap都有用到,但其用法却不同,在此只介绍在JDK1.7中用到的几个方法:
arrayBaseOffset(Class class):获取数组第一个元素的偏移地址。
arrayIndexScale(Class class):获取数组中元素的增量地址。
getObjectVolatile(Object obj, long offset):获取obj对象中offset偏移地址对应的Object型field属性值,支持Volatile读内存语义。
1.5.1 get
JDK1.7的ConcurrentHashMap的get操作是不加锁的,因为在每个Segment中定义的HashEntry数组和在每个HashEntry中定义的value和next HashEntry节点都是volatile类型的,volatile类型的变量可以保证其在多线程之间的可见性,因此可以被多个线程同时读,从而不用加锁。而其get操作步骤也比较简单,定位Segment –> 定位HashEntry –> 通过getObjectVolatile()方法获取指定偏移量上的HashEntry –> 通过循环遍历链表获取对应值。
定位Segment:(((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE
定位HashEntry:(((tab.length - 1) & h)) << TSHIFT) + TBASE
1.5.2 put
ConcurrentHashMap的put方法就要比get方法复杂的多,其实现源码如下:
public V put(K key, V value) { Segment<K,V> s; if (value == null) throw new NullPointerException(); int hash = hash(key); int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment s = ensureSegment(j); return s.put(key, hash, value, false); }
同样的,put方法首先也会通过hash算法定位到对应的Segment,此时,如果获取到的Segment为空,则调用ensureSegment()方法;否则,直接调用查询到的Segment的put方法插入值,注意此处并没有用getObjectVolatile()方法读,而是在ensureSegment()中再用volatile读操作,这样可以在查询segments不为空的时候避免使用volatile读,提高效率。在ensureSegment()方法中,首先使用getObjectVolatile()读取对应Segment,如果还是为空,则以segments[0]为原型创建一个Segment对象,并将这个对象设置为对应的Segment值并返回。
在Segment的put方法中,首先需要调用tryLock()方法获取锁,然后通过hash算法定位到对应的HashEntry,然后遍历整个链表,如果查到key值,则直接插入元素即可;而如果没有查询到对应的key,则需要调用rehash()方法对Segment中保存的table进行扩容,扩容为原来的2倍,并在扩容之后插入对应的元素。插入一个key/value对后,需要将统计Segment中元素个数的count属性加1。最后,插入成功之后,需要使用unLock()释放锁。
1.5.3 size
ConcurrentHashMap的size操作的实现方法也非常巧妙,一开始并不对Segment加锁,而是直接尝试将所有的Segment元素中的count相加,这样执行两次,然后将两次的结果对比,如果两次结果相等则直接返回;而如果两次结果不同,则再将所有Segment加锁,然后再执行统计得到对应的size值。
2. ConcurrentHashMap的实现——JDK8版本
在JDK1.7之前,ConcurrentHashMap是通过分段锁机制来实现的,所以其最大并发度受Segment的个数限制。因此,在JDK1.8中,ConcurrentHashMap的实现原理摒弃了这种设计,而是选择了与HashMap类似的数组+链表+红黑树的方式实现,而加锁则采用CAS和synchronized实现。
2.1 CAS原理
一般地,锁分为悲观锁和乐观锁:悲观锁认为对于同一个数据的并发操作,一定是为发生修改的;而乐观锁则任务对于同一个数据的并发操作是不会发生修改的,在更新数据时会采用尝试更新不断重试的方式更新数据。
在Java中,悲观锁的实现方式就是各种锁;而乐观锁则是通过CAS实现的。
CAS(Compare And Swap,比较交换):CAS有三个操作数,内存值V、预期值A、要修改的新值B,当且仅当A和V相等时才会将V修改为B,否则什么都不做。Java中CAS操作通过JNI本地方法实现,在JVM中程序会根据当前处理器的类型来决定是否为cmpxchg指令添加lock前缀。如果程序是在多处理器上运行,就为cmpxchg指令加上lock前缀(Lock Cmpxchg);反之,如果程序是在单处理器上运行,就省略lock前缀。
Intel的手册对lock前缀的说明如下:
确保对内存的读-改-写操作原子执行。之前采用锁定总线的方式,但开销很大;后来改用缓存锁定来保证指令执行的原子性。
禁止该指令与之前和之后的读和写指令重排序。
把写缓冲区中的所有数据刷新到内存中。
CAS同时具有volatile读和volatile写的内存语义。
不过CAS操作也存在一些缺点:1. 存在ABA问题,其解决思路是使用版本号;2. 循环时间长,开销大;3. 只能保证一个共享变量的原子操作。
为了能更好的利用CAS原理解决并发问题,JDK1.5之后在java.util.concurrent.atomic包下采用CAS实现了一系列的原子操作类,这在之后的文章中会详细分析介绍。
2.2 ConcurrentHashMap的数据结构
\
JDK1.8的ConcurrentHashMap数据结构比JDK1.7之前的要简单的多,其使用的是HashMap一样的数据结构:数组+链表+红黑树。ConcurrentHashMap中包含一个table数组,其类型是一个Node数组;而Node是一个继承自Map.Entry<K, V>的链表,而当这个链表结构中的数据大于8,则将数据结构升级为TreeBin类型的红黑树结构。另外,JDK1.8中的ConcurrentHashMap中还包含一个重要属性sizeCtl,其是一个控制标识符,不同的值代表不同的意思:其为0时,表示hash表还未初始化,而为正数时这个数值表示初始化或下一次扩容的大小,相当于一个阈值;即如果hash表的实际大小>=sizeCtl,则进行扩容,默认情况下其是当前ConcurrentHashMap容量的0.75倍;而如果sizeCtl为-1,表示正在进行初始化操作;而为-N时,则表示有N-1个线程正在进行扩容。
2.3 ConcurrentHashMap的初始化
JDK1.8的ConcurrentHashMap的初始化过程也比较简单,所有的构造方法最终都会调用如下这个构造方法。
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (initialCapacity < concurrencyLevel) // Use at least as many bins initialCapacity = concurrencyLevel; // as estimated threads long size = (long)(1.0 + (long)initialCapacity / loadFactor); int cap = (size >= (long)MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int)size); this.sizeCtl = cap; }
该初始化过程通过指定的初始容量initialCapacity,加载因子loadFactor和预估并发度concurrencyLevel三个参数计算table数组的初始大小sizeCtl的值。
可以看到,在构造ConcurrentHashMap时,并不会对hash表(Node<K, V>[] table)进行初始化,hash表的初始化是在插入第一个元素时进行的。在put操作时,如果检测到table为空或其长度为0时,则会调用initTable()方法对table进行初始化操作。
private final Node<K,V>[] initTable() { Node<K,V>[] tab; int sc; while ((tab = table) == null || tab.length == 0) { if ((sc = sizeCtl) < 0) Thread.yield(); // lost initialization race; just spin else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; }
可以看到,该方法使用一个循环实现table的初始化;在循环中,首先会判断sizeCtl的值,如果其小于0,则说明其正在进行初始化或扩容操作,则不执行任何操作,调用yield()方法使当前线程返回等待状态;而如果sizeCtl大于等于0,则使用CAS操作比较sizeCtl的值是否是-1,如果是-1则进行初始化。初始化时,如果sizeCtl的值为0,则创建默认容量的table;否则创建大小为sizeCtl的table;然后重置sizeCtl的值为0.75n,即当前table容量的0.75倍,并返回创建的table,此时初始化hash表完成。
2.4 Node链表和红黑树结构转换
上文中说到,一个table元素会根据其包含的Node节点数在链表和红黑树两种结构之间切换,因此我们本节先介绍Node节点的结构转换的实现。
首先,在table中添加一个元素时,如果添加元素的链表节点个数超过8,则会触发链表向红黑树结构转换。具体的实现方法如下:
private final void treeifyBin(Node<K,V>[] tab, int index) { Node<K,V> b; int n, sc; if (tab != null) { if ((n = tab.length) < MIN_TREEIFY_CAPACITY) tryPresize(n << 1); else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { synchronized (b) { if (tabAt(tab, index) == b) { TreeNode<K,V> hd = null, tl = null; for (Node<K,V> e = b; e != null; e = e.next) { TreeNode<K,V> p = new TreeNode<K,V>(e.hash, e.key, e.val, null, null); if ((p.prev = tl) == null) hd = p; else tl.next = p; tl = p; } setTabAt(tab, index, new TreeBin<K,V>(hd)); } } } } }
该方法首先会检查hash表的大小是否大于等于MIN_TREEIFY_CAPACITY,默认值为64,如果小于该值,则表示不需要转化为红黑树结构,直接将hash表扩容即可。
如果当前table的长度大于64,则使用CAS获取指定的Node节点,然后对该节点通过synchronized加锁,由于只对一个Node节点加锁,因此该操作并不影响其他Node节点的操作,因此极大的提高了ConcurrentHashMap的并发效率。加锁之后,便是将这个Node节点所在的链表转换为TreeBin结构的红黑树。
然后,在table中删除元素时,如果元素所在的红黑树节点个数小于6,则会触发红黑树向链表结构转换。具体实现如下:
static <K,V> Node<K,V> untreeify(Node<K,V> b) { Node<K,V> hd = null, tl = null; for (Node<K,V> q = b; q != null; q = q.next) { Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null); if (tl == null) hd = p; else tl.next = p; tl = p; } return hd; }
该方法实现简单,在此不再进行细致分析。
2.5 ConcurrentHashMap的操作
2.5.1 get
通过get获取hash表中的值时,首先需要获取key值的hash值。而在JDK1.8的ConcurrentHashMap中通过speed()方法获取。
static final int spread(int h) { return (h ^ (h >>> 16)) & HASH_BITS; }
speed()方法将key的hash值进行再hash,让hash值的高位也参与hash运算,从而减少哈希冲突。然后再查询对应的value值。
public V get(Object key) { Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek; int h = spread(key.hashCode()); if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { if ((eh = e.hash) == h) { if ((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; } else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null; while ((e = e.next) != null) { if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }
查询时,首先通过tabAt()方法找到key对应的Node链表或红黑树,然后遍历该结构便可以获取key对应的value值。其中,tabAt()方法主要通过Unsafe类的getObjectVolatile()方法获取value值,通过volatile读获取value值,可以保证value值的可见性,从而保证其是当前最新的值。
2.5.2 put
JDK1.8的ConcurrentHashMap的put操作实现方式主要定义在putVal(K key, V value, boolean onlyIfAbsent)中。
final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException(); int hash = spread(key.hashCode()); int binCount = 0; for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0) tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { binCount = 1; for (Node<K,V> e = f;; ++binCount) { K ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node<K,V> pred = e; if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } } else if (f instanceof TreeBin) { Node<K,V> p; binCount = 2; if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) { if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } addCount(1L, binCount); return null; }
put操作大致可分为以下几个步骤:
计算key的hash值,即调用speed()方法计算hash值;
获取hash值对应的Node节点位置,此时通过一个循环实现。有以下几种情况:
如果table表为空,则首先进行初始化操作,初始化之后再次进入循环获取Node节点的位置;
如果table不为空,但没有找到key对应的Node节点,则直接调用casTabAt()方法插入一个新节点,此时不用加锁;
如果table不为空,且key对应的Node节点也不为空,但Node头结点的hash值为MOVED(-1),则表示需要扩容,此时调用helpTransfer()方法进行扩容;
其他情况下,则直接向Node中插入一个新Node节点,此时需要对这个Node链表或红黑树通过synchronized加锁。
插入元素后,判断对应的Node结构是否需要改变结构,如果需要则调用treeifyBin()方法将Node链表升级为红黑树结构;
最后,调用addCount()方法记录table中元素的数量。
2.5.3 size
JDK1.8的ConcurrentHashMap中保存元素的个数的记录方法也有不同,首先在添加和删除元素时,会通过CAS操作更新ConcurrentHashMap的baseCount属性值来统计元素个数。但是CAS操作可能会失败,因此,ConcurrentHashMap又定义了一个CounterCell数组来记录CAS操作失败时的元素个数。因此,ConcurrentHashMap中元素的个数则通过如下方式获得:
元素总数 = baseCount + sum(CounterCell)
final long sumCount() { CounterCell[] as = counterCells; CounterCell a; long sum = baseCount; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += a.value; } } return sum; }
而JDK1.8中提供了两种方法获取ConcurrentHashMap中的元素个数。
public int size() { long n = sumCount(); return ((n < 0L) ? 0 : (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int)n); } public long mappingCount() { long n = sumCount(); return (n < 0L) ? 0L : n; // ignore transient negative values }
如代码所示,size只能获取int范围内的ConcurrentHashMap元素个数;而如果hash表中的数据过多,超过了int类型的最大值,则推荐使用mappingCount()方法获取其元素个数。
以上主要分析了ConcurrentHashMap在JDK1.7和JDK1.8中的两种不同实现方案,当然ConcurrentHashMap的功能强大,还有很多方法本文都未能详细解析,但其分析方法与本文以上的内容类似,因此不再赘述,感兴趣的同学可以自行分析比较。通过学习JDK源码,对以后的Java程序设计也有一定的帮助。本系列文章将深入剖析Java concurrent包中的并发编程设计,并从中提炼出一些使用场景,从而为今后的Java程序设计提供一些小小的灵感。