HDU1394 Minimum Inversion Number
/* 求逆序数 Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 7097 Accepted Submission(s): 4333 Problem Description The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj. For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following: a1, a2, ..., an-1, an (where m = 0 - the initial seqence) a2, a3, ..., an, a1 (where m = 1) a3, a4, ..., an, a1, a2 (where m = 2) ... an, a1, a2, ..., an-1 (where m = n-1) You are asked to write a program to find the minimum inversion number out of the above sequences. Input The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1. Output For each case, output the minimum inversion number on a single line. Sample Input 10 1 3 6 9 0 8 5 7 4 2 Sample Output 16 Author CHEN, Gaoli Source ZOJ Monthly, January 2003 Recommend Ignatius.L */ /*暴力解决*/ #include <iostream> #include<algorithm> #include<queue> #include<cmath> #include<string.h> #include<stdio.h> #include<stdlib.h> using namespace std; #define maxn 5100 #define Max 100000000 int main() { int sum[maxn],ans,i,j,n,num; while(~scanf("%d",&n)) { ans=Max; num=0; for(i=1;i<=n;i++) scanf("%d",&sum[i]); for(i=1; i<=n; i++) for(j=i+1; j<=n; j++) { if(sum[i]>sum[j]) num++; } for(i=1;i<=n;i++) { num=num+(n-sum[i])-(sum[i]+1); ans = min(ans,num); } printf("%d\n",ans); } return 0; } /*用线段树做*/ #include <iostream> #include<algorithm> #include<queue> #include<cmath> #include<string.h> #include<stdio.h> #include<stdlib.h> using namespace std; //#define maxn 50100 const int maxn = 222222; #define lson l, m , rt<<1 #define rson m+1 , r ,rt<<1|1 int sum[maxn<<2]; void PushUP(int rt) { sum[rt]=sum[rt<<1]+sum[rt<<1|1]; } void cre(int l,int r,int rt) { sum[rt]=0; if(l==r) { return ; } int m = (l+r)>>1; cre(lson); cre(rson); PushUP(rt); } void update(int p, int l,int r,int rt) { if(l==r) { sum[rt]++; return ; } int m = (l + r)>>1; if(p<=m) update(p,lson); else update(p,rson); PushUP(rt); // 和方法2对照发现两个递归有点区别,法2是先把根节点的和更新,而 //法3是先更新叶子节点,然后反过来更新根节点 } int qur(int L,int R,int l,int r,int rt) { if(L<=l&&r<=R) { return sum[rt]; } //大神是分数组的区间,而我们是分要求的区间,所以他是小于等于,真妙 int m = (l + r)>>1; int ret = 0; if(L<=m) ret+=qur(L,R,lson); if(R>m) ret+=qur(L,R,rson); return ret; } int a[maxn]; int main() { int n; while(~scanf("%d",&n)) { cre(0,n-1,1); int sum=0; for(int i=0; i<n; i++) { scanf("%d",&a[i]); sum+=qur(a[i],n-1,0,n-1,1); update(a[i],0,n-1,1); } int ret =sum; for(int i=0; i<n; i++) { sum+=n-(a[i]+1)-a[i]; ret=min(ret,sum); } printf("%d\n",ret); } return 0; }