2^x mod n = 1 HDU1395

/*2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6738    Accepted Submission(s): 2022

Problem Description Give a number n, find the minimum x(x>0) that satisfies 2^x mod n = 1.

 

Input One positive integer on each line, the value of n.

 

Output If the minimum x exists, print a line with 2^x mod n = 1.

Print 2^? mod n = 1 otherwise.

You should replace x and n with specific numbers.

 

Sample Input 2 5

Sample Output 2^? mod 2 = 1 2^4 mod 5 = 1

Author MA, Xiao

Source ZOJ Monthly, February 2003 */

 

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
bool
h[10000];
int
main()
{

    int
n,k,n1,l,c;
    while
(scanf("%d",&n)!=EOF)
    {

        memset(h,0,sizeof(h));
        k=0;l=1;c=2;
       printf("2^");
       if
(n==1||n==2)
       {

           printf("? mod ");
           printf("%d = 1\n",n);
           continue
;
       }

       n1=n;
       while
(c%n1!=1)
       {

           h[c]=1;
           c*=2;
           c=c%n1;
           l++;
           if
(c!=1)
           {

               if
(h[c]==1)//经典的比较方法,与前面的c比较,值得收藏。
               {

                   k=1;
                   break
;
               }

               else

               h[c]=1;
           }
       }

       if
(k==1)
       {

           printf("? mod ");
           printf("%d = 1\n",n);
           continue
;
       }

       else

       {


           printf("%d mod ",l);
           printf("%d = 1\n",n);
       }
    }

    return
0;
}//本题的为偶数时一定不到l,因为2^l=n*q+r.......r一定为偶数不会是1,所以可以把偶数单独拿出来。

posted @ 2012-07-28 17:07  myth_HG  阅读(1285)  评论(0编辑  收藏  举报