摘要: 卷积神经网络(CNN)是一种深度神经网络,通过多个卷积层提取图像特征,广泛应用于图像分类。随着移动设备处理的图像数据量的不断增加,神经网络在移动终端上的应用越来越广泛。然而,这些网络需要大量的计算和先进的硬件支持,很难适应移动设备。本文论证了MobileNetV3对于移动终端上的实际图像分类任务,可以在效率和准确性之间取得较好的平衡。在我们的实验中,比较了MobileNetV3和其他几种常用的预训练CNN模型在不同图像数据集上的分类性能。选择的数据集都很好地代表了移动设备的应用场景。结果表明,作为一种轻量级的神经网络,与其他大型网络相比,MobileNetV3以有效的方式实现了良好的精度性能。此外,ROC证实了MobileNetV3相对于其他实验模型的优势。并对适用于MobileNetV3的图像数据集的特征提出了一些猜想。 阅读全文
posted @ 2022-03-05 20:27 Hepeiqi 阅读(1393) 评论(0) 推荐(0) 编辑