中缀、后缀、前缀表达式

 1、中缀表达表

就是我们平常所见的算术表达式,1+(2-3)*5/3

 

2、后缀表达式

又称为逆波兰式,中缀表达式利于人的理解,但不便于计算机的处理。因此需要将中缀表达式转换成后缀表达式,以方便计算机处理。所谓后缀表达式就是将运算符放在运算数之后。

如中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的结果为1 2 3 + 4 × + 5 – 

优先级:

后缀表达式运算符的优先级(从低到高):1、(  2、 + - 3 、* / 4、)

逻辑:

中缀表达式转换为后缀表达式,如下:

(1)准备两栈,运算符栈S1和中间结果栈S2

(2)从左到右扫描

,遇到操作数时压入S2

,遇到运算符时若S1为空或“(”或优先级比S1栈顶运算符的高(>)则压入S1否则从S1出栈并压入S2

,如遇到运算符为“)”则依次从S1出栈并压入S2直到遇见“(”为止且此时需要丢弃这一堆括号

(3)S1中剩余的运算符依次出栈并压入S2,再依次从S2出栈并对其进行逆序转换(掉头)即得到了后缀表达式的结果

 

3、前缀表达式

又称为波兰式,原理与后缀表达式类似,操作方式不一样。

如中缀表达式“1+((2+3)×4)-5”转换为前缀表达式的结果为- + 1 × + 2 3 4 5

优先级:

前缀表达式运算符的优先级(从低到高):1、)  2、 + - 3 、* / 4、(

逻辑:

中缀表达式转换为前缀表达式,如下:

(1)准备两栈,运算符栈S1和中间结果栈S2

(2)从右到左扫描

,遇到操作数时压入S2

,遇到运算符时若S1为空或“)”或优先级比S1栈顶运算符的高或相等(>=)则压入S1否则从S1出栈并压入S2

,如遇到运算符为“(”则依次从S1出栈并压入S2直到遇见“)”为止且此时需要丢弃这一堆括号

(3)S1中剩余的运算符依次出栈并压入S2,再依次从S2出栈即得到了前缀表达式的结果

 

参考:

前缀、中缀、后缀表达式(逆波兰表达式)

计算中缀表达式

posted on 2019-06-01 09:23  村_长  阅读(803)  评论(0编辑  收藏  举报

导航