numpy.where() 用法和np.argsort()的用法
numpy.where() 有两种用法:
1. np.where(condition, x, y)
满足条件(condition),输出x,不满足输出y。
如果是一维数组,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
>>> aa = np.arange(10)
>>> np.where(aa,1,-1)
array([-1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) # 0为False,所以第一个输出-1
>>> np.where(aa > 5,1,-1)
array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1])
>>> np.where([[True,False], [True,True]], # 官网上的例子
[[1,2], [3,4]],
[[9,8], [7,6]])
array([[1, 8],
[3, 4]])
上面这个例子的条件为[[True,False], [True,False]]
,分别对应最后输出结果的四个值。第一个值从[1,9]
中选,因为条件为True,所以是选1。第二个值从[2,8]
中选,因为条件为False,所以选8,后面以此类推。类似的问题可以再看个例子:
>>> a = 10
>>> np.where([[a > 5,a < 5], [a == 10,a == 7]],
[["chosen","not chosen"], ["chosen","not chosen"]],
[["not chosen","chosen"], ["not chosen","chosen"]])
array([['chosen', 'chosen'],
['chosen', 'chosen']], dtype='<U10')
2. np.where(condition)
只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。
>>> a = np.array([2,4,6,8,10])
>>> np.where(a > 5) # 返回索引
(array([2, 3, 4]),)
>>> a[np.where(a > 5)] # 等价于 a[a>5]
array([ 6, 8, 10])
>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))
上面这个例子条件中[[0,1],[1,0]]
的真值为两个1,各自的第一维坐标为[0,1]
,第二维坐标为[1,0]
。
下面看个复杂点的例子:
>>> a = np.arange(27).reshape(3,3,3)
>>> a
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])
>>> np.where(a > 5)
(array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]),
array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))
# 符合条件的元素为
[ 6, 7, 8]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]]
所以np.where会输出每个元素的对应的坐标,因为原数组有三维,所以tuple中有三个数组。
需要注意的一点是,输入的不能直接是list,需要转为array或者为array才行。比如range(10)和np.arange(10)后者返回的是数组,使用np.where才能达到效果。
np.argsort()的用法
1
|
numpy.argsort(a, axis = - 1 , kind = ’quicksort’, order = None ) |
argsort(a)#获取a从小到大排列的数组
argsort(-a)#获取a从大到小排列的数组
argmin(a)#获取a最小值下标
argmax(a)#获取a最大值下标
功能: 将矩阵a按照axis排序,并返回排序后的下标
参数: a:输入矩阵, axis:需要排序的维度
返回值: 输出排序后的下标
(一维数组)
1
2
3
4
|
import numpy as np x = np.array([ 1 , 4 , 3 , - 1 , 6 , 9 ]) x.argsort() # array([3, 0, 1, 2, 4, 5], dtype=int64) |
可以发现,argsort()是将X中的元素从小到大排序后,提取对应的索引index,然后输出到y
如x[3]=-1最小,x[5]=9最大
所以取数组x的最小值可以写成:
1
|
x[x.argsort()[ 0 ]] |
或者用argmin()函数
1
|
x[x.argmin()] |
数组x的最大值,写成:
1
|
x[x.argsort()[ - 1 ]] # -1代表从后往前反向的索引 |
或者用argmax()函数,不再详述
1
|
x[x.argmax()] |
输出排序后的数组
x[x.argsort()] # 或 x[np.argsort(x)]
(二维数组)
x = np.array([[1,5,4],[-1,6,9]]) # [[ 1 5 4] # [-1 6 9]]
沿着行向下(每列)的元素进行排序
np.argsort(x,axis=0) # array([[1, 0, 0], # [0, 1, 1]], dtype=int64)
沿着列向右(每行)的元素进行排序
np.argsort(x,axis=1) # array([[0, 2, 1], # [0, 1, 2]], dtype=int64)