numpy.where() 用法和np.argsort()的用法

numpy.where() 有两种用法:

1. np.where(condition, x, y)

满足条件(condition),输出x,不满足输出y。


如果是一维数组,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

>>> aa = np.arange(10)
>>> np.where(aa,1,-1)
array([-1,  1,  1,  1,  1,  1,  1,  1,  1,  1])  # 0为False,所以第一个输出-1
>>> np.where(aa > 5,1,-1)
array([-1, -1, -1, -1, -1, -1,  1,  1,  1,  1])

>>> np.where([[True,False], [True,True]],    # 官网上的例子
			 [[1,2], [3,4]],
             [[9,8], [7,6]])
array([[1, 8],
	   [3, 4]])

上面这个例子的条件为[[True,False], [True,False]],分别对应最后输出结果的四个值。第一个值从[1,9]中选,因为条件为True,所以是选1。第二个值从[2,8]中选,因为条件为False,所以选8,后面以此类推。类似的问题可以再看个例子:

>>> a = 10
>>> np.where([[a > 5,a < 5], [a == 10,a == 7]],
             [["chosen","not chosen"], ["chosen","not chosen"]],
             [["not chosen","chosen"], ["not chosen","chosen"]])

array([['chosen', 'chosen'],
       ['chosen', 'chosen']], dtype='<U10')



2. np.where(condition)

只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。

>>> a = np.array([2,4,6,8,10])
>>> np.where(a > 5)				# 返回索引
(array([2, 3, 4]),)   
>>> a[np.where(a > 5)]  			# 等价于 a[a>5]
array([ 6,  8, 10])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

上面这个例子条件中[[0,1],[1,0]]的真值为两个1,各自的第一维坐标为[0,1],第二维坐标为[1,0]


下面看个复杂点的例子:

>>> a = np.arange(27).reshape(3,3,3)
>>> a
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])

>>> np.where(a > 5)
(array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]),
 array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))


# 符合条件的元素为
	   [ 6,  7,  8]],

      [[ 9, 10, 11],
       [12, 13, 14],
       [15, 16, 17]],

      [[18, 19, 20],
       [21, 22, 23],
       [24, 25, 26]]]

所以np.where会输出每个元素的对应的坐标,因为原数组有三维,所以tuple中有三个数组。

需要注意的一点是,输入的不能直接是list,需要转为array或者为array才行。比如range(10)和np.arange(10)后者返回的是数组,使用np.where才能达到效果。

 

np.argsort()的用法

1
numpy.argsort(a, axis=-1, kind=’quicksort’, order=None)

 argsort(a)#获取a从小到大排列的数组

argsort(-a)#获取a从大到小排列的数组

argmin(a)#获取a最小值下标

argmax(a)#获取a最大值下标

功能: 将矩阵a按照axis排序,并返回排序后的下标
参数: a:输入矩阵, axis:需要排序的维度
返回值: 输出排序后的下标

 

(一维数组)

 

1
2
3
4
import numpy as np
x = np.array([1,4,3,-1,6,9])
x.argsort()
# array([3, 0, 1, 2, 4, 5], dtype=int64)

 

可以发现,argsort()是将X中的元素从小到大排序后,提取对应的索引index,然后输出到y
如x[3]=-1最小,x[5]=9最大

 

所以取数组x的最小值可以写成:

 

1
x[x.argsort()[0]]

 

或者用argmin()函数

 

1
x[x.argmin()]

 

 
数组x的最大值,写成:

 

1
x[x.argsort()[-1]]  # -1代表从后往前反向的索引

 

或者用argmax()函数,不再详述

 

1
x[x.argmax()]

 

 输出排序后的数组

 

 x[x.argsort()]
# 或
x[np.argsort(x)]

 

 

 

(二维数组)

 

x = np.array([[1,5,4],[-1,6,9]])
# [[ 1  5  4]
# [-1  6  9]]

 

 

 

沿着行向下(每列)的元素进行排序  

 

np.argsort(x,axis=0)
# array([[1, 0, 0],
#        [0, 1, 1]], dtype=int64)

 

 

 

沿着列向右(每行)的元素进行排序

 

np.argsort(x,axis=1)
# array([[0, 2, 1],
#        [0, 1, 2]], dtype=int64)

 

posted @ 2020-07-13 21:44  你的雷哥  阅读(1589)  评论(0编辑  收藏  举报