53. Maximum Subarr
思路一dp法:结果最后一个样例超时,说明还不够简化
class Solution:
def maxSubArray(self,nums):
lens = len(nums)
sum = -10000000000000000
maxsum = -1000000000000000
p1 = p2 =0
while True:
sum = 0
if p2 >= lens:
break
for i in range((p2-p1)+1):
sum += nums[p1+i]
if sum > maxsum:
maxsum = sum
if sum < 0:
p1 = p2+1
p2 = p1
if sum >= 0:
p2 = p2 + 1
return maxsum
if __name__ == '__main__':
nums = [-1,-2,0]
print(Solution().maxSubArray(nums))
思路二:对思路一化简
这一段代码我运用了动态规划的思想,在此期间看了很多优秀,精简的算法,然后自己总结出来了这段代码
这段代码首先是一个迭代,从1到nums的最后一个数字(range这个函数不懂的可以查一下),
然后就是总体了,nums[i]是从1开始的,开始算的是num[0]+nums[1]与nums[i]的最大值,
这里这么写可以看成nums[i-1]+nums[i]是看nums[i-1]大于0还是小于0,大于0自然选这个,
小于0的话,相加是要比num[i]小的,所以选择num[i],这样一直往后迭代,最后返回max(nums),
也就是nums列表的最大值。
这段代码首先是一个迭代,从1到nums的最后一个数字(range这个函数不懂的可以查一下),
然后就是总体了,nums[i]是从1开始的,开始算的是num[0]+nums[1]与nums[i]的最大值,
这里这么写可以看成nums[i-1]+nums[i]是看nums[i-1]大于0还是小于0,大于0自然选这个,
小于0的话,相加是要比num[i]小的,所以选择num[i],这样一直往后迭代,最后返回max(nums),
也就是nums列表的最大值。
1 class Solution: 2 def maxSubArray(self, nums: List[int]) -> int: 3 for i in range(1,len(nums)): 4 nums[i] = max(nums[i-1]+nums[i],nums[i]) 5 return max(nums)
作者:你的雷哥
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须在文章页面给出原文连接,否则保留追究法律责任的权利。