吴恩达《机器学习》课程总结(19)_总结

(1)涉及到的算法

1.监督学习:线性回归,逻辑回归,神经网络,SVM。

线性回归(下面第三行x0(i)其实是1,可以去掉)

逻辑回归

神经网络(写出前向传播即可,反向框架会自动计算)

SVM

2.非监督学习:聚类算法(K-mean),降维(PCA)

K-mean

PCA

3.异常检测

4.推荐系统

(2)策略

1.偏差与方差,正则化

训练误差减去人类最高水平为偏差(欠拟合),交叉验证集误差减训练误差为方差(过拟合);

正则化解决方差问题,不对θ0正则化;

2.学习曲线

全过程观测偏差与方差,所以更全面。

3.误差分析

找到哪种原因造成误差最大,最该花时间的地方。

4.评价方法

尽量使用单一指标评价,准确率不适合类偏斜,用精确度和召回率判定

精确度是预测的视角(预测为正样本中有多少是正样本),召回率是样本视角(正样本有多少被预测到了)

F1=2(PR)/(P+R)

5.数据集的拆分

训练集用于训练模型,,交叉验证集用于筛选模型/调参,测试集用来做最终评价。

6.上限分析

每一步假设输出完全正确时,能提高多少的正确率,提高最高的地方就是最该马上花时间解决的地方。

(3)应用

1.OCR

检测,分割,识别,现在常常不分割了,直接序列化识别。

2.大规模的机器学习

小批量的训练方法以及使用并行计算。

posted @   你的雷哥  阅读(830)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
阅读排行:
· 25岁的心里话
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 一起来玩mcp_server_sqlite,让AI帮你做增删改查!!
· 零经验选手,Compose 一天开发一款小游戏!
点击右上角即可分享
微信分享提示