吴恩达《机器学习》课程总结(13)_聚类
13.1无监督学习:简介
将没有标签的样本分成不同的集合(簇),这种算法叫做聚类。常用的领域有市场分割、社交网络分析、计算机集群管理、了解星系等。
13.2K-均值算法
(1)K-均值是最普及的聚类算法,是一种迭代算法,假设需要将数据聚类成n个组,这时候首先随机选择K个点,称为聚类中心。
将每个样本归属到最近的聚类中心,然后重新计算每个类的中心变成新的聚类中心,重复以上步骤,直到聚类中心不变。
伪代码如下:
13.3优化目标
k-均值的最小化问题,就是每个样本点到对应聚类中心的距离之和:
与其他算法不同的是,k-均值每一次迭代都会是代价函数变小。
13.4随机初始化
(1)K应该小于样本数m;
(2)从样本中随机选取K个实例作为初始聚类中心。
K-均值可能会出现局部最小的情况,如下所示:
解决方案:多次运行该算法,最后在比较K-均值代价函数最小的结果,这种方法适用于K取较小的时候(2-10),K太大没有明显效果。
13.5选择聚类数
绘制聚类数与代价函数的图,然后选取出现斜率突然变小的地方的值(“肘部法则”)。
作者:你的雷哥
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须在文章页面给出原文连接,否则保留追究法律责任的权利。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 25岁的心里话
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 一起来玩mcp_server_sqlite,让AI帮你做增删改查!!
· 零经验选手,Compose 一天开发一款小游戏!