浏览器标题切换
浏览器标题切换end
把博客园图标替换成自己的图标
把博客园图标替换成自己的图标end

2019牛客多校第三场 F.Planting Trees

题目链接

题目链接

题解

题面上面很明显的提示了需要严格\(O(n^3)\)的算法。

先考虑一个过不了的做法,枚举右下角的\((x,y)\),然后二分矩形面积,枚举其中一边,则复杂度是\(O(n^3 \log n^2)\)的。

考虑另外一个做法,同样是枚举右下角\((x,y)\),然后枚举一边长度,显然现在只需要知道左边最远能延伸到哪,这个玩意显然是有单调性的,那么尺取一下,套个单调队列判断即可。

注意细节。

#include <bits/stdc++.h>
using namespace std;
  
namespace io {
char buf[1<<21], *p1 = buf, *p2 = buf;
inline char gc() {
    if(p1 != p2) return *p1++;
    p1 = buf;
    p2 = p1 + fread(buf, 1, 1 << 21, stdin);
    return p1 == p2 ? EOF : *p1++;
}
#define G gc
  
#ifndef ONLINE_JUDGE
#undef G
#define G getchar
#endif
  
template<class I>
inline void read(I &x) {
    x = 0; I f = 1; char c = G();
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = G(); }
    while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = G(); }
    x *= f;
}
  
template<class I>
inline void write(I x) {
    if(x == 0) {putchar('0'); return;}
    I tmp = x > 0 ? x : -x;
    if(x < 0) putchar('-');
    int cnt = 0;
    while(tmp > 0) {
        buf[cnt++] = tmp % 10 + '0';
        tmp /= 10;
    }
    while(cnt > 0) putchar(buf[--cnt]);
}
  
#define in(x) read(x)
#define outn(x) write(x), putchar('\n')
#define out(x) write(x), putchar(' ')
  
} using namespace io;
  
#define ll long long
const int N = 510;
  
struct Node {
    int x, y, v;
};
int T, n, m;
int a[N][N], mx[N], mn[N];
int qmin[N], qmax[N];
  
int main() {
    read(T);
    while(T--) {
        int ans = 0;
        read(n); read(m);
        for(int i = 1; i <= n; ++i) for(int j = 1; j <= n; ++j) read(a[i][j]);
        for(int l = 1; l <= n; ++l) {
        	for(int i = 1; i <= n; ++i) mn[i] = 1e9, mx[i] = 0;
			for(int r = l; r <= n; ++r) {
				for(int i = 1; i <= n; ++i) {
					mn[i] = min(mn[i], a[r][i]);
					mx[i] = max(mx[i], a[r][i]);
				}
				int cur = 1, l0 = 1, l1 = 1, r0 = 0, r1 = 0;
				for(int i = 1; i <= n; ++i) {
					while(l0 <= r0 && mn[qmin[r0]] > mn[i]) --r0;
					while(l1 <= r1 && mx[qmax[r1]] < mx[i]) --r1;
					qmin[++r0] = i; qmax[++r1] = i;
					while(l0 <= r0 && l1 <= r1 && cur <= i && mx[qmax[l1]] - mn[qmin[l0]] > m) {
						++cur;
						while(l0 <= r0 && qmin[l0] < cur) ++l0;
						while(l1 <= r1 && qmax[l1] < cur) ++l1;
					}
					if(mx[qmax[l1]] - mn[qmin[l0]] <= m) ans = max(ans, (r - l + 1) * (i - cur + 1));
				}
			}
		}
        outn(ans);
    }
}
posted @ 2019-07-25 23:30  henry_y  阅读(398)  评论(0编辑  收藏  举报