bloomFilter_demo
参考博客:(14条消息) 布隆(Bloom Filter)过滤器入门_布隆过滤器入门_qq_39093474的博客-CSDN博客
5 分钟搞懂布隆过滤器,亿级数据过滤算法你值得拥有! - 知乎 (zhihu.com)
BloomFilterTest.java
package com.hmb; import com.google.common.hash.BloomFilter; import com.google.common.hash.Funnels; import java.util.HashSet; import java.util.Set; public class BloomFilterTest { private static Integer EXPECTED_INSERT_NUM = 10000000; private static double fpp = 0.01; private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), EXPECTED_INSERT_NUM, fpp); private static Set<Integer> set = new HashSet<>(); public static void main(String[] args) { long stime = System.currentTimeMillis(); for (int i = 0; i < EXPECTED_INSERT_NUM; i++) { bloomFilter.put(i); } int count = 0; for (int i = EXPECTED_INSERT_NUM; i < EXPECTED_INSERT_NUM * 2; i++) { if (bloomFilter.mightContain(i)) { count++; } } long etime = System.currentTimeMillis(); System.out.println("incorrect judge num: " + count); System.out.println("spend time: " + (etime - stime) + " ms"); stime = System.currentTimeMillis(); for (int i = 0; i < EXPECTED_INSERT_NUM; i++) { set.add(i); } count = 0; for (int i = EXPECTED_INSERT_NUM; i < EXPECTED_INSERT_NUM * 2; i++) { if (set.contains(i)) { count++; } } etime = System.currentTimeMillis(); System.out.println("incorrect judge num: " + count); System.out.println("spend time: " + (etime - stime) + " ms"); } }
笔者拿bloomFilter跟set进行了对比,当EXPECTED_INSERT_NUM<=10000000时,发现都是set更快,当EXPECTED_INSERT_NUM==100000000时,set就会报OOM了