Docker部署 ES Kibana
- Docker部署 ES Kibana
Run Elasticsearch:
$ docker run -d --name elasticsearch --net somenetwork -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" elasticsearch:tag
一、启动elasticsearch
# docker run -d --name elasticsearch -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" elasticsearch:7.6.2
# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
9baadd19b609 elasticsearch:7.6.2 "/usr/local/bin/dock…" 37 seconds ago Up 35 seconds 0.0.0.0:9200->9200/tcp, :::9200->9200/tcp, 0.0.0.0:9300->9300/tcp, :::9300->9300/tcp elasticsearch
二、查询docker CPU内存使用情况
# docker stats
# docker stop 9baadd19b609
9baadd19b609
三、增加内存限制
# docker run -d --name elasticsearch01 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms64m -Xmx512m" elasticsearch:7.6.2
a071457ea8c0d8f2ca098ec6da52d6d268f1122511d9e57720b911d28c05ec5a
# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
a071457ea8c0 elasticsearch:7.6.2 "/usr/local/bin/dock…" 27 seconds ago Up 25 seconds 0.0.0.0:9200->9200/tcp, :::9200->9200/tcp, 0.0.0.0:9300->9300/tcp, :::9300->9300/tcp elasticsearch01
# docker stats a071457ea8c0
测试:curl localhost:9200
# curl localhost:9200 { "name" : "a071457ea8c0", "cluster_name" : "docker-cluster", "cluster_uuid" : "UCXl_SjhSoeLs5tL6vhdsw", "version" : { "number" : "7.6.2", "build_flavor" : "default", "build_type" : "docker", "build_hash" : "ef48eb35cf30adf4db14086e8aabd07ef6fb113f", "build_date" : "2020-03-26T06:34:37.794943Z", "build_snapshot" : false, "lucene_version" : "8.4.0", "minimum_wire_compatibility_version" : "6.8.0", "minimum_index_compatibility_version" : "6.0.0-beta1" }, "tagline" : "You Know, for Search" }