C#实现简单的布隆过滤器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | using System; using System.Collections; using System.Collections.Generic; using System.Text; namespace UserCheckDemo { public class BloomFilter { public BitArray _bloomArray; public Int64 BloomArrayLength { get ; } public Int64 BitIndexCount { get ; } public Int64 _numberOfHashed; public BloomFilter( int BloomArrayLength, int bitIndexCount) { _bloomArray = new BitArray(BloomArrayLength); this .BloomArrayLength = BloomArrayLength; this .BitIndexCount = bitIndexCount; } public void Add( string str) { var hashCode = GetHashCode(str); Random random = new Random(hashCode); for ( int i = 0; i < BitIndexCount; i++) { var ss = ( int )( this .BloomArrayLength - 1); var c = random.Next(ss); _bloomArray[c] = true ; } } public bool IsExist( string str) { var hashCode = GetHashCode(str); Random random = new Random(hashCode); for ( int i = 0; i < BitIndexCount; i++) { var s = random.Next(( int )( this .BloomArrayLength - 1)); if (!_bloomArray[s]) { return false ; } } return true ; } public int GetHashCode( object value) { return value.GetHashCode(); } /// <summary> /// 计算基本布隆过滤器散列的最佳数量 /// </summary> /// <param name="bitSize"></param> /// <param name="setSize"></param> /// <returns></returns> public int OptionalNumberHashes( int bitSize, int setSize) { return ( int )Math.Ceiling((bitSize / setSize) * Math.Log(2.0)); } } } |
1 2 3 4 5 6 7 8 9 10 11 | BloomFilter bf = new BloomFilter(1000000, 3); int errorCount = 0; for ( int i = 0; i < 100000; i++) { bf.Add($ "key{i}" ); } for ( int i = 10000; i < 12000; i++) { if (bf.IsExist($ "key{i}" )) errorCount++; } |
本文来自博客园,作者:可乐加冰-Mr-Wang,转载请注明原文链接:https://www.cnblogs.com/helloworld-wang/p/15133307.html
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步