[leetcode-416-Partition Equal Subset Sum]
Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
Note:
- Each of the array element will not exceed 100.
- The array size will not exceed 200.
Example 1:
Input: [1, 5, 11, 5] Output: true Explanation: The array can be partitioned as [1, 5, 5] and [11].
Example 2:
Input: [1, 2, 3, 5] Output: false Explanation: The array cannot be partitioned into equal sum subsets.
思路:
类似于[leetcode-494-Target Sum]
想办法找到其中是否存在某几个元素的和为所有元素和的一半。使用回溯法查找。
却超时了。
void Par(bool& flag, vector<int>&nums, int target,int& temp,int begin) { if (temp == target) { flag = true; return; } for (int i = begin; i < nums.size(); i++) { if (!flag) { temp += nums[i]; if(temp<=target)dfsPar(flag, nums, target, temp, i + 1); temp -= nums[i]; } } } bool canPartition(vector<int>& nums) { bool flag = false; int sum = 0; if (nums.size() == 1)return false; for (int n : nums)sum += n; if (sum & 1)return false; int tempsum = 0; Par(flag, nums, sum >> 1, tempsum,0); return flag; }
想到了dp。我们定义一个一维的dp数组,其中dp[i]表示数字i是否是原数组的任意个子集合之和,那么我们我们最后只需要返回dp[target]就行了。我们初始化dp[0]为true,由于题目中限制了所有数字为正数,那么我们就不用担心会出现和为0或者负数的情况。那么关键问题就是要找出递归公式了,我们需要遍历原数组中的数字,对于遍历到的每个数字nums[i],我们需要更新我们的dp数组,要更新[nums[i], target]之间的值,那么对于这个区间中的任意一个数字j,如果dp[j - nums[i]]为true的话,那么dp[j]就一定为true,于是地推公式如下:
dp[j] = dp[j] || dp[j - nums[i]] (nums[i] <= j <= target)
有了递推公式,那么我们就可以写出代码如下:
bool canPartition(vector<int>& nums) { int sum = 0; if (nums.size() == 1)return false; for (int n : nums)sum += n; if (sum & 1)return false; sum = sum >> 1;//除以2 vector<int> dp(sum + 1,0);//dp[i]代表和为i的可能输 dp[0] = 1; for (int i = 0; i < nums.size();i++) { for (int j = sum; j >= i;j--) { dp[j] = dp[j] || dp[j - nums[i]]; } } return dp[sum]; }
参考了[leetcode-494-Target Sum]的dp解法,以及
https://discuss.leetcode.com/topic/62285/concise-c-solution-summary-with-dfs-dp-bit
http://www.cnblogs.com/grandyang/p/5951422.html。