使用gpu加速theano
测试的代码为
from theano import function, config, shared, tensor import numpy import time vlen = 10 * 30 * 768 # 10 x #cores x # threads per core iters = 1000 rng = numpy.random.RandomState(22) x = shared(numpy.asarray(rng.rand(vlen), config.floatX)) f = function([], tensor.exp(x)) print(f.maker.fgraph.toposort()) t0 = time.time() for i in range(iters): r = f() t1 = time.time() print("Looping %d times took %f seconds" % (iters, t1 - t0)) print("Result is %s" % (r,)) if numpy.any([isinstance(x.op, tensor.Elemwise) and ('Gpu' not in type(x.op).__name__) for x in f.maker.fgraph.toposort()]): print('Used the cpu') else: print('Used the gpu')运行cpu的代码为
THEANO_FLAGS=device=cpu python gpu_tutorial1.py运行gpu的代码为
THEANO_FLAGS=device=cuda0 python gpu_tutorial1.py
THEANO_FLAGS='device=cuda1' python cifar10.py >train_cifar10.log
0表示使用编号为0的进行训练
[1] theano文档