yolo9000论文笔记
1.19.7 mAP imagenet detection
2. 67 FPS 76.8 mAP VOC 2007
3. 40 FPS 78.6 mAP
4.物体识别目的: 更快,更准,识别更多的物体
5.数据集: Our method uses a hierarchical view of object classification that allows us to
combine distinct datasets together
6.训练方法: propose a joint training algorithm that allows us to train object detectors on both detection and classification
data
7.YOLO detection system -> YOLOv2 -> YOLO9000
2. 67 FPS 76.8 mAP VOC 2007
3. 40 FPS 78.6 mAP
4.物体识别目的: 更快,更准,识别更多的物体
5.数据集: Our method uses a hierarchical view of object classification that allows us to
combine distinct datasets together
6.训练方法: propose a joint training algorithm that allows us to train object detectors on both detection and classification
data
7.YOLO detection system -> YOLOv2 -> YOLO9000