lstm_layer.cpp的源码阅读

#include <string>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/filler.hpp"
#include "caffe/layer.hpp"
#include "caffe/layers/lstm_layer.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
void LSTMLayer<Dtype>::RecurrentInputBlobNames(vector<string>* names) const {
  names->resize(2);
  (*names)[0] = "h_0";
  (*names)[1] = "c_0";
}

template <typename Dtype>
void LSTMLayer<Dtype>::RecurrentOutputBlobNames(vector<string>* names) const {
  names->resize(2);
  (*names)[0] = "h_" + format_int(this->T_);
  (*names)[1] = "c_T";
}

template <typename Dtype>
void LSTMLayer<Dtype>::RecurrentInputShapes(vector<BlobShape>* shapes) const {
  const int num_output = this->layer_param_.recurrent_param().num_output();
  const int num_blobs = 2;
  shapes->resize(num_blobs);
  for (int i = 0; i < num_blobs; ++i) {
    (*shapes)[i].Clear();
    (*shapes)[i].add_dim(1);  // a single timestep
    (*shapes)[i].add_dim(this->N_);
    (*shapes)[i].add_dim(num_output);
  }
}

template <typename Dtype>
void LSTMLayer<Dtype>::OutputBlobNames(vector<string>* names) const {
  names->resize(1);
  (*names)[0] = "h";
}

//Fills net_param with the recurrent network architecture
template <typename Dtype>
void LSTMLayer<Dtype>::FillUnrolledNet(NetParameter* net_param) const {
  const int num_output = this->layer_param_.recurrent_param().num_output();
  CHECK_GT(num_output, 0) << "num_output must be positive";
  const FillerParameter& weight_filler =
      this->layer_param_.recurrent_param().weight_filler();
  const FillerParameter& bias_filler =
      this->layer_param_.recurrent_param().bias_filler();

      
  // Add generic LayerParameter's (without bottoms/tops) of layer types we'll
  // use to save redundant code.
  /*******相当于手动写的一个一般的InnerProduct,用于更下面的复制,重用******/
  
  //inner_product层无bias
  LayerParameter hidden_param;
  hidden_param.set_type("InnerProduct");
  hidden_param.mutable_inner_product_param()->set_num_output(num_output * 4);
  hidden_param.mutable_inner_product_param()->set_bias_term(false);
  hidden_param.mutable_inner_product_param()->set_axis(2);
  hidden_param.mutable_inner_product_param()->
      mutable_weight_filler()->CopyFrom(weight_filler);
  //inner_product层有bias
  LayerParameter biased_hidden_param(hidden_param);
  biased_hidden_param.mutable_inner_product_param()->set_bias_term(true);
  biased_hidden_param.mutable_inner_product_param()->
      mutable_bias_filler()->CopyFrom(bias_filler);
  //eltwise层
  LayerParameter sum_param;
  sum_param.set_type("Eltwise");
  sum_param.mutable_eltwise_param()->set_operation(
      EltwiseParameter_EltwiseOp_SUM);
  //scale层
  LayerParameter scale_param;
  scale_param.set_type("Scale");
  scale_param.mutable_scale_param()->set_axis(0);
  //slice层
  LayerParameter slice_param;
  slice_param.set_type("Slice");
  slice_param.mutable_slice_param()->set_axis(0);
  //split层
  LayerParameter split_param;
  split_param.set_type("Split");
  
  vector<BlobShape> input_shapes;
  RecurrentInputShapes(&input_shapes);
  CHECK_EQ(2, input_shapes.size());

  
  /****开始增加层****/
  
  //增加输入层
  LayerParameter* input_layer_param = net_param->add_layer();
  input_layer_param->set_type("Input");
  InputParameter* input_param = input_layer_param->mutable_input_param();

  input_layer_param->add_top("c_0");//原始输入c
  input_param->add_shape()->CopyFrom(input_shapes[0]);

  input_layer_param->add_top("h_0");//原始输入h
  input_param->add_shape()->CopyFrom(input_shapes[1]);
  //增加slice切割层
  LayerParameter* cont_slice_param = net_param->add_layer();
  cont_slice_param->CopyFrom(slice_param);//复制上面的类型
  cont_slice_param->set_name("cont_slice");
  cont_slice_param->add_bottom("cont");
  cont_slice_param->mutable_slice_param()->set_axis(0);

  // Add layer to transform all timesteps of x to the hidden state dimension.
  //     W_xc_x = W_xc * x + b_c
  {
    //增加有bias的innerproduct层
    LayerParameter* x_transform_param = net_param->add_layer();
    x_transform_param->CopyFrom(biased_hidden_param);
    x_transform_param->set_name("x_transform");
    x_transform_param->add_param()->set_name("W_xc");//weight betreen x and c
    x_transform_param->add_param()->set_name("b_c");//bias
    x_transform_param->add_bottom("x");
    x_transform_param->add_top("W_xc_x");
    x_transform_param->add_propagate_down(true);
  }

  if (this->static_input_) {
    // Add layer to transform x_static to the gate dimension.
    //     W_xc_x_static = W_xc_static * x_static
    LayerParameter* x_static_transform_param = net_param->add_layer();
    x_static_transform_param->CopyFrom(hidden_param);
    x_static_transform_param->mutable_inner_product_param()->set_axis(1);
    x_static_transform_param->set_name("W_xc_x_static");
    x_static_transform_param->add_param()->set_name("W_xc_static");
    x_static_transform_param->add_bottom("x_static");
    x_static_transform_param->add_top("W_xc_x_static_preshape");
    x_static_transform_param->add_propagate_down(true);

    LayerParameter* reshape_param = net_param->add_layer();
    reshape_param->set_type("Reshape");
    BlobShape* new_shape =
         reshape_param->mutable_reshape_param()->mutable_shape();
    new_shape->add_dim(1);  // One timestep.
    // Should infer this->N as the dimension so we can reshape on batch size.
    new_shape->add_dim(-1);
    new_shape->add_dim(
        x_static_transform_param->inner_product_param().num_output());
    reshape_param->set_name("W_xc_x_static_reshape");
    reshape_param->add_bottom("W_xc_x_static_preshape");
    reshape_param->add_top("W_xc_x_static");
  }
  //增加slice切割层
  LayerParameter* x_slice_param = net_param->add_layer();
  x_slice_param->CopyFrom(slice_param);
  x_slice_param->add_bottom("W_xc_x");
  x_slice_param->set_name("W_xc_x_slice");
  
  LayerParameter output_concat_layer;
  output_concat_layer.set_name("h_concat");
  output_concat_layer.set_type("Concat");
  output_concat_layer.add_top("h");
  output_concat_layer.mutable_concat_param()->set_axis(0);

  for (int t = 1; t <= this->T_; ++t) {
    string tm1s = format_int(t - 1);
    string ts = format_int(t);
    
    cont_slice_param->add_top("cont_" + ts);
    x_slice_param->add_top("W_xc_x_" + ts);

    // Add layers to flush the hidden state when beginning a new
    // sequence, as indicated by cont_t.
    //     h_conted_{t-1} := cont_t * h_{t-1}
    //
    // Normally, cont_t is binary (i.e., 0 or 1), so:
    //     h_conted_{t-1} := h_{t-1} if cont_t == 1
    //                       0   otherwise
    //每一个{}包含的内容表示一层,大家伙一起组成net_param
    //相当于prototxt的内容,不过此处用c程序生成
    {
      LayerParameter* cont_h_param = net_param->add_layer();
      cont_h_param->CopyFrom(scale_param); //type:
      cont_h_param->set_name("h_conted_" + tm1s);//name:
      cont_h_param->add_bottom("h_" + tm1s);//bottom:
      cont_h_param->add_bottom("cont_" + ts);//bottom:
      cont_h_param->add_top("h_conted_" + tm1s);//top
    }

    // Add layer to compute
    //     W_hc_h_{t-1} := W_hc * h_conted_{t-1}
    {
      LayerParameter* w_param = net_param->add_layer();
      w_param->CopyFrom(hidden_param);
      w_param->set_name("transform_" + ts);
      w_param->add_param()->set_name("W_hc");
      w_param->add_bottom("h_conted_" + tm1s);
      w_param->add_top("W_hc_h_" + tm1s);
      w_param->mutable_inner_product_param()->set_axis(2);
    }

    // Add the outputs of the linear transformations to compute the gate input.
    //     gate_input_t := W_hc * h_conted_{t-1} + W_xc * x_t + b_c
    //                   = W_hc_h_{t-1} + W_xc_x_t + b_c
    {
      LayerParameter* input_sum_layer = net_param->add_layer();
      input_sum_layer->CopyFrom(sum_param);
      input_sum_layer->set_name("gate_input_" + ts);
      input_sum_layer->add_bottom("W_hc_h_" + tm1s);
      input_sum_layer->add_bottom("W_xc_x_" + ts);
      if (this->static_input_) {
        input_sum_layer->add_bottom("W_xc_x_static");
      }
      input_sum_layer->add_top("gate_input_" + ts);
    }
    
    //LSTMUnit只是空间图像里面的上部
    // Add LSTMUnit layer to compute the cell & hidden vectors c_t and h_t.
    // Inputs: c_{t-1}, gate_input_t = (i_t, f_t, o_t, g_t), cont_t
    // Outputs: c_t, h_t
    //     [ i_t' ]
    //     [ f_t' ] := gate_input_t 四个门
    //     [ o_t' ]
    //     [ g_t' ]
    //         i_t := \sigmoid[i_t']
    //         f_t := \sigmoid[f_t']
    //         o_t := \sigmoid[o_t']
    //         g_t := \tanh[g_t']
    //         c_t := cont_t * (f_t .* c_{t-1}) + (i_t .* g_t)
    //         h_t := o_t .* \tanh[c_t]
    {
      LayerParameter* lstm_unit_param = net_param->add_layer();
      lstm_unit_param->set_type("LSTMUnit");
      lstm_unit_param->add_bottom("c_" + tm1s);
      lstm_unit_param->add_bottom("gate_input_" + ts);
      lstm_unit_param->add_bottom("cont_" + ts);
      lstm_unit_param->add_top("c_" + ts);
      lstm_unit_param->add_top("h_" + ts);
      lstm_unit_param->set_name("unit_" + ts);
    }
    output_concat_layer.add_bottom("h_" + ts);
  }  // for (int t = 1; t <= this->T_; ++t)

  {
    LayerParameter* c_T_copy_param = net_param->add_layer();
    c_T_copy_param->CopyFrom(split_param);
    c_T_copy_param->add_bottom("c_" + format_int(this->T_));
    c_T_copy_param->add_top("c_T");
  }
  net_param->add_layer()->CopyFrom(output_concat_layer);
}

INSTANTIATE_CLASS(LSTMLayer);
REGISTER_LAYER_CLASS(LSTM);

}  // namespace caffe

解读内容在代码里面。


posted @ 2017-03-30 16:44  开往春天的拖拉机  阅读(125)  评论(0编辑  收藏  举报