调度器7—TASK_UNINTERRUPTIBLE和TASK_INTERRUPTIBLE
一、D状态简介
1. D状态的由来
__schedule(bool preempt) { ... if (prev != next) { trace_sched_switch(preempt, prev, next); } ... }
trace_sched_switch() 中若 prev->state 为 TASK_UNINTERRUPTIBLE,在解析后的 trace 上就显示为 D 状态。
只要将进程状态设置为 TASK_UNINTERRUPTIBLE,然后触发任务切换将当前任务切走,此时在解析后的trace上看prev线程就是D状态的,若是 TASK_INTERRUPTIBLE,trace上看就是sleep状态。UNINTERRUPTIBLE 的意思是不被信号唤醒。
2. 使用逻辑
(1) 和 schedule_timeout 配合使用,延时到期后由定时器到期后由 process_timeout 函数调用 wake_up_process(timeout->task) 唤醒自己,唤醒函数中会将任务状态设置为 TASK_RUNNING。
static int sdias_sclp_send(struct sclp_req *req) //sclp_sdias.c { for (...) { set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(msecs_to_jiffies(500)); } }
(2) 和 hrtime 配合使用
和 schedule_timeout 搭配使用的时间精度是 jiffify,精度太低。可以使用高精度定时器,定时器到期后使用 hrtimer_wakeup 来唤醒任务。
int jbd2_journal_stop(handle_t *handle) //transaction.c { ... ktime_t expires = ktime_add_ns(ktime_get(), commit_time); set_current_state(TASK_UNINTERRUPTIBLE); schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); .... }
(3) 和等待队列配合使用,当条件满足时唤醒自己
init_waitqueue_head(&pp->wait); static int smu_release(struct inode *inode, struct file *file) //smu.c { ... DECLARE_WAITQUEUE(wait, current); add_wait_queue(&pp->wait, &wait); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); schedule(); if (pp->cmd.status != 1) break; } } remove_wait_queue(&pp->wait, &wait); ... } wake_up_all(&pp->wait);
先定义一个全局等待队列头 wait_queue_head_t 结构,然后再定义一个 wait_queue_entry 结构来保存需要唤醒的任务和指定唤醒函数 default_wake_function(默认),然后将 wait_queue_entry 挂在全局链表 wait_queue_head_t 上,当条件满足时调用 wake_up_all 相关函数唤醒全局链表上的任务,任务唤醒后判断条件是否满足,满足就退出,不满足就切出任务继续休眠。
注意这里的 wait_queue_entry wait 是一个局部变量,保存在栈中,由于进程休眠后此函数没有退出,没有退栈,因此是没有问题的。
3. 可以指定唤醒何种状态的任务
int wake_up_state(struct task_struct *p, unsigned int state); int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags, int sibling_count_hint); /* 常用的 wake_up_q 只用户唤醒 interrupt 和 uninterruptable 类型的任务 */ void wake_up_q(struct wake_q_head *head) { try_to_wake_up(task, TASK_NORMAL, 0, 1); //TASK_NORMAL == (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) }
这里有个参数 state,是个掩码,只唤醒此时是这个掩码包含状态的任务,与它交集为空的任务不唤醒。
二、D状态的使用机制
1. 大量驱动中进行自定义使用
就是上面三种使用方式,先 set_current_state(TASK_UNINTERRUPTIBLE) 然后再将任务切走,并等待唤醒。
2. swait/swakeup机制
__swait_XXX 函数进入等待,swake_up_XXX 唤醒,就是对上面机制的简单封转,见 swait.c/swait.h
3. wait/wakeup机制
wait_event_XXX 函数进入等待,__wake_up_XXX 唤醒,就是对上面机制的简单封转,见 wait.c/wait.h
4. wait_on_bit/wake_up_bit
wait_on_bit_XXX 函数进入等待,wake_up_bit 等函数唤醒,就是对上面机制的简单封转,见 wait_bit.c/wait_bit.h
5. semaphore
/* 使用的是 TASK_UNINTERRUPTIBLE */ extern void down(struct semaphore *sem); extern int __must_check down_timeout(struct semaphore *sem, long jiffies); /* 使用的是 TASK_INTERRUPTIBLE */ extern int __must_check down_interruptible(struct semaphore *sem); /* 使用的是 TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) */ extern int __must_check down_killable(struct semaphore *sem); /* 只对 sem->count - 1 进行判断 */ extern int __must_check down_trylock(struct semaphore *sem); /* 使用 list_first_entry(&sem->wait_list, ...) 只唤醒wait链表上的首个任务 */ extern void up(struct semaphore *sem);
6. rwsem
/* 使用的是 TASK_UNINTERRUPTIBLE */ void __sched down_read(struct rw_semaphore *sem); void __sched down_write(struct rw_semaphore *sem); /* 使用的是 TASK_KILLABLE */ int __sched down_read_killable(struct rw_semaphore *sem); int __sched down_write_killable(struct rw_semaphore *sem);
读写信号量导出的函数中只使用了 TASK_UNINTERRUPTIBLE,没有使用 TASK_INTERRUPTIBLE,实现见 rwsem.c
7. mutex
/* 使用的是 TASK_UNINTERRUPTIBLE */ void __sched mutex_lock(struct mutex *lock); /* 使用的是 TASK_INTERRUPTIBLE */ int __sched mutex_lock_interruptible(struct mutex *lock) /* 使用的是 TASK_KILLABLE */ int __sched mutex_lock_killable(struct mutex *lock)
8. rtmutex
/* 使用的是 TASK_UNINTERRUPTIBLE */ void __sched rt_mutex_lock(struct rt_mutex *lock) /* 使用的是 TASK_INTERRUPTIBLE */ int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) int rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
9. completion
/* 使用的是 TASK_UNINTERRUPTIBLE */ void __sched wait_for_completion(struct completion *x) unsigned long __sched wait_for_completion_timeout(struct completion *x, unsigned long timeout); void __sched wait_for_completion_io(struct completion *x) unsigned long __sched wait_for_completion_io_timeout(struct completion *x, unsigned long timeout) /* 使用的是 TASK_INTERRUPTIBLE */ int __sched wait_for_completion_interruptible(struct completion *x) /* 使用的是 TASK_KILLABLE */ int __sched wait_for_completion_killable(struct completion *x) long __sched wait_for_completion_killable_timeout(struct completion *x, unsigned long timeout)
10. futex 用户空间锁
/* 使用的是 TASK_INTERRUPTIBLE,然后使用 wake_up_q 唤醒 */ void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, struct hrtimer_sleeper *timeout) //futex.c
注:以上是在 5.4 内核中检索 TASK_UNINTERRUPTIBLE,然后删除重复项得出来的,应该是比较全面。
三、测试例子
kernel_uninter.c:
#define pr_fmt(fmt) "mytest: " fmt #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/sysfs.h> #include <linux/string.h> #include <linux/wait.h> #include <linux/sched.h> #define mytest_attr(_name) \ static struct kobj_attribute _name##_attr = { \ .attr = { \ .name = __stringify(_name), \ .mode = 0644, \ }, \ .show = _name##_show, \ .store = _name##_store, \ } #define mytest_attr_ro(_name) \ static struct kobj_attribute _name##_attr = { \ .attr = { \ .name = __stringify(_name), \ .mode = S_IRUGO, \ }, \ .show = _name##_show, \ } #define mytest_attr_wo(_name) \ static struct kobj_attribute _name##_attr = { \ .attr = { \ .name = __stringify(_name), \ .mode = S_IWUGO, \ }, \ .store = _name##_store, \ } struct mytest { int tri_value; struct kobject *kobj; wait_queue_head_t uninter_wait; wait_queue_head_t inter_wait; wait_queue_head_t killable_wait; }; struct mytest test; //works ok ssize_t uninter_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { if (test.tri_value != 1) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&test.uninter_wait, &wait); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); schedule(); pr_info("uninter pid=%d %d was waken up! state=0x%lx\n", current->pid, ((struct task_struct *)wait.private)->pid, ((struct task_struct *)wait.private)->state); if (test.tri_value == 1) { break; } } remove_wait_queue(&test.uninter_wait, &wait); } return sprintf(buf, "%d\n", test.tri_value); } mytest_attr_ro(uninter); //works bad ssize_t inter_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { if (test.tri_value != 2) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&test.inter_wait, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); schedule(); pr_info("inter pid=%d %d was waken up! state=0x%lx\n", current->pid, ((struct task_struct *)wait.private)->pid, ((struct task_struct *)wait.private)->state); if (test.tri_value == 2) { //process signal break; } } remove_wait_queue(&test.inter_wait, &wait); } return sprintf(buf, "%d\n", test.tri_value); } mytest_attr_ro(inter); //works bad ssize_t killable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { if (test.tri_value != 3) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&test.killable_wait, &wait); for (;;) { set_current_state(TASK_KILLABLE); schedule(); pr_info("killable pid=%d %d was waken up! state=0x%lx\n", current->pid, ((struct task_struct *)wait.private)->pid, ((struct task_struct *)wait.private)->state); if (test.tri_value == 3) { break; } } remove_wait_queue(&test.killable_wait, &wait); } return sprintf(buf, "%d\n", test.tri_value); } mytest_attr_ro(killable); ssize_t trigger_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int val; if (sscanf(buf, "%d", &val) != 1) { return -EINVAL; } test.tri_value = val; switch(test.tri_value) { case 1: wake_up_all(&test.uninter_wait); break; case 2: wake_up_all(&test.inter_wait); break; case 3: wake_up_all(&test.killable_wait); break; default: break; } return count; } ssize_t trigger_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%d\n", test.tri_value); } mytest_attr(trigger); static struct attribute *mytest_attrs[] = { &uninter_attr.attr, &inter_attr.attr, &killable_attr.attr, &trigger_attr.attr, NULL, }; static struct attribute_group mytest_attr_group = { .name = "mytest", .attrs = mytest_attrs, }; static int mytest_device_file_init(void) { int ret = 0; test.kobj = kobject_create_and_add("test", NULL); if (!test.kobj) { pr_info("kobject_create_and_add failed!\n"); return -ENOMEM; } ret = sysfs_create_group(test.kobj, &mytest_attr_group); if (ret) { pr_info("sysfs_create_group failed!\n"); return ret; } return ret; } static int __init mytest_init(void) { int ret; init_waitqueue_head(&test.uninter_wait); init_waitqueue_head(&test.inter_wait); init_waitqueue_head(&test.killable_wait); ret = mytest_device_file_init(); pr_info("mytest_init probed! ret=%d\n", ret); return ret; } static void __exit mytest_exit(void) { sysfs_remove_group(test.kobj, &mytest_attr_group); kobject_put(test.kobj); pr_info("mytest_exit removed\n"); } module_init(mytest_init); module_exit(mytest_exit); MODULE_LICENSE("GPL");
Makefile:
obj-m += kernel_uninter.o all: make -C /lib/modules/`uname -r`/build M=$(PWD) rm -rf *.o *.o.cmd *.ko.cmd *.order *.symvers *.mod.c .tmp_versions clean: rm -rf *.ko
测试结果:
# cat /sys/test/mytest/killable # kill -17 > <pid_killable> //对SIGCHLD没有任何反应 # kill -9 > <pid_killable> //SIGKILL信号,疯狂打印模块中加的pid等于 pid_killable 的唤醒信息 # kill -14 > <pid_killable> //SIGALRM信号,疯狂打印模块中加的pid等于 pid_killable 的唤醒信息 # kill -29 > <pid_killable> //SIGIO信号,疯狂打印模块中加的pid等于 pid_killable 的唤醒信息 # echo 3 > trigger //只有这样才能救
killable 类型的休眠,不仅对 kill 信号,而且对非 kill 信号也响应,而且若是没有返回用户空间会一直响应。
# /sys/test/mytest/uninter # ^C //不响应,dmesg看log无打印 # kill -9 > <pid_uninter> //SIGKILL信号不响应
uninterruptable 类型的休眠对任何信号都不响应,对SIGKILL、SIGBUS都不响应,任何信号都无法唤醒它。
针对 inter 和 killable 被信号持续唤醒修正:
/* 在 break 的判断条件里面加上对信号pending的判断 */ signal_pending(current)
在 inter 和 killable 的唤醒位置加或上 signal_pending(current) 的判断修正后:
# while true; do cat /sys/test/mytest/killable; done # kill -17 <pid_killable> //另一个终端执行,对SIGCHLD不响应。 # kill -7 <pid_killable> //另一个终端执行,对SIGBUS不响应。 # kill -9 <pid_killable> //另一个终端执行,对SIGKILL响应,用户空间命令只是打印“Killed”,但是并没有停止运行,且PID变更了。 # kill -9 <pid_killable> //另一个终端执行,每次对SIGKILL的响应PID都会变更。############ # kill -2 <pid_killable> //另一个终端执行,对SIGINT响应,用户空间也直接退出 # while true; do cat /sys/test/mytest/inter; done # kill -9 <pid_inter> //另一个终端执行,对SIGKILL响应,用户空间命令只是打印“Killed”,但是并没有停止运行,且PID变更了。 # kill -2 <pid_inter> //另一个终端执行,对SIGINT响应,用户空间也直接退出 # cat /sys/test/mytest/uninter # kill -9 <pid_inter> //另一个终端执行,无响应 # kill -2 <pid_inter> //另一个终端执行,无响应
试验结论:
1. 对于 TASK_INTERRUPTIBLE 和 TASK_KILLABLE 类型的信号若是不处理,信号就会一直存在,一直持续唤醒任务,拉高系统负载,把系统搞死。它需要在返回用户空间时执行。TASK_UNINTERRUPTIBLE 类型的睡眠任何信号都唤醒不了,无需对是否有pending信号进行判断。
2. 用户空间的程序一直执行,每次接收到SIGKILL信号,其PID还可以一直变,但是任务一直运行不退出。
3. 三种休眠对 SIGCHILD 都不响应。
4. wake_up_all() 会唤醒所有等待的任务。
四、结论
1. 大多数机制都是支持 interrupt 和 uninterrupt 的两种进入等待方式的。内核中的锁相关机制若无特殊标识,一般是使用 TASK_UNINTERRUPTIBLE,而用户空间锁机制,在内核中使用的是TASK_INTERRUPTIBLE 。
posted on 2021-10-16 20:18 Hello-World3 阅读(1470) 评论(0) 编辑 收藏 举报