06 2019 档案
摘要:在CTR预估中,为了解决稀疏特征的问题,学者们提出了FM模型来建模特征之间的交互关系。但是FM模型只能表达特征之间两两组合之间的关系,无法建模两个特征之间深层次的关系或者说多个特征之间的交互关系,因此学者们通过Deep Network来建模更高阶的特征之间的关系。 因此,FM和深度网络DNN的结合也
阅读全文
摘要:本文记录几个在广告和推荐里面rank阶段常用的模型。 广告领域机器学习问题的输入其实很大程度了影响了模型的选择,因为输入一般维度非常高,稀疏,同时包含连续性特征和离散型特征。模型即使到现在DeepFM类的方法,其实也都很简单。模型的发展主要体现于对特征的充分挖掘上,比如利用低阶和高阶特征、尝试自动学
阅读全文
摘要:在计算广告中,CTR是非常重要的一环。对于特征组合来说,业界通用的做法主要有两大类:FM系列和Tree系列。这里我们来介绍一下FM系列。 在传统的线性模型中,每个特征都是独立的,如果需要考虑特征与特征之间的相互作用,可能需要人工对特征进行交叉组合。非线性SVM可以对特征进行核变换,但是在特征高度稀疏
阅读全文
摘要:如何在没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意从而愿意使用推荐系统,就是冷启动的问题。 冷启动问题(cold start)主要分3类。 用户冷启动 物品冷启动 系统冷启动 1)用户冷启动可以利用用户注册信息,也可以选择合适的物品启动用户的兴趣(基于NLP方向的推荐) 2)物
阅读全文