Bitmap vs 2Bitmap的实现
【本文链接】
http://www.cnblogs.com/hellogiser/p/bitmap-vs-2bitmap.html
【题目】
在2.5亿个整数找出不重复的整数,内存不足以容纳着2.5亿个整数
【分析】
Bitmap就是用一个bit位来标记某个元素是否存在,而2Bitmap就是用两个bit为来标记某个元素的个数,00,01,10,11(分别表示0,1,2,3,0表示不存在,1表示存在1次,后面依次)。
整数可能是正数也可能是负数,首先只考虑正整数情况,采用2Bitmap方法,用00表示不存在,01表示出现1次,10表示出现2次及以上,此方法总共需要的内存2^31*2bit = 1Gb = 128MB(32位的正整数有2^31个,每个存储需要2bit,所以就是1Gb,换成字节就是128MB),这样内存就应该能够容纳了,最后在处理完所有的数后,只要输出对应位为01的数即可。如果这2.5亿个数里面既有正数又有负数那么就用两个2Bitmap分别存储正数和负数(取绝对值存储),零就随便放,所需要的内存是512MB。
【代码】
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
/*
version: 1.0 author: hellogiser blog: http://www.cnblogs.com/hellogiser date: 2014/10/8 */ #include "stdafx.h" #include <iostream> using namespace std; class BitSet { public: BitSet (int range) { // [0,range) m_nRange = range; m_nLength = m_nRange / 32 + 1; bitset = new int[m_nLength]; // init all with 0 for (int i = 0; i < m_nLength; i++) { bitset[i] = 0; } } ~BitSet() { delete []bitset; } void Set(int number) { int i = number / 32; int j = number % 32; bitset[i] |= (1 << j); } int Get(int number) { int i = number / 32; int j = number % 32; return (bitset[i] & (1 << j)) >> j; } void Output() { for (int i = 0; i < m_nRange; i++) { if (Get(i)) { cout << i << " "; } } cout << endl; } private: int *bitset; int m_nRange; // range of numbers int m_nLength; // len of array }; class BitSet1 { public: BitSet1 (int range) { // [0,range) //default value m_nBitWidth = 1; m_nWord = 32 / m_nBitWidth; m_nRange = range; m_nLength = m_nRange / m_nWord + 1; bitset = new int[m_nLength]; // init all with 0 for (int i = 0; i < m_nLength; i++) { bitset[i] = 0; } } ~BitSet1() { delete []bitset; } void Set(int number) { int i = number / m_nWord; int j = number % m_nWord; bitset[i] |= (1 << j); } void Clear(int number) { int i = number / m_nWord; int j = number % m_nWord; bitset[i] &= ~(1 << j); } int Get(int number) { // return count of number int i = number / m_nWord; int j = number % m_nWord; return (bitset[i] & (1 << j)) >> j; } void Output() { for (int i = 0; i < m_nRange; i++) { if (Get(i)) { cout << i << " "; } } cout << endl; } private: int m_nBitWidth;// 1 2 3 int m_nWord; // word = 32/BitWidth /* 1: 0,1 2: 00,01,10,11 3: 000,...111 */ int *bitset; int m_nRange; // range of numbers int m_nLength; // len of array }; class BitSet2 { public: BitSet2 (int range) { // [0,range) //default value m_nBitWidth = 2;// 1,2,3 m_nWord = 32 / m_nBitWidth; //32, 16,8 m_nMaxCount = 1 << m_nBitWidth; //1,3,7 m_nRange = range; m_nLength = m_nRange / m_nWord + 1; bitset = new int[m_nLength]; // init all with 0 for (int i = 0; i < m_nLength; i++) { bitset[i] = 0; } } ~BitSet2() { delete []bitset; } void Add(int number) { int count = Get(number); __Set(number, count + 1); } void __Set(int number, int count) { if(count > 3) return; //clear first Clear(number); // then set int i = number / m_nWord; int j = number % m_nWord; bitset[i] |= ((3 & count) << 2 * j); } void Clear(int number) { int i = number / m_nWord; int j = number % m_nWord; bitset[i] &= ~(3 << (2 * j)); } int Get(int number) { // return count of number int i = number / m_nWord; int j = number % m_nWord; return (bitset[i] & (3 << (2 * j))) >> (2 * j); } void Output() { for (int i = 0; i < m_nRange; i++) { if (Get(i)) { cout << i << " "; } } cout << endl; } private: int m_nBitWidth;// 1 2 3 int m_nWord; // word = 32/BitWidth /* 1: 0,1 2: 00,01,10,11 3: 000,...111 */ int m_nMaxCount; // 1,11,111===>1,3,7 int *bitset; int m_nRange; // range of numbers int m_nLength; // len of array }; void test_default1(int *a, int len, int range) { cout << "===Bitset1===" << endl; BitSet1 bs1(range); for (int i = 0; i < len; i++) { bs1.Set(a[i]); } for (int i = 0; i < range; i++ ) { cout << i << " count = " << bs1.Get(i) << endl; } } void test_case1() { int a[] = {1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 7, 8}; int range = 10; test_default1(a, sizeof(a) / 4, range); } void test_default2(int *a, int len, int range) { cout << "===Bitset2===" << endl; BitSet2 bs2(range); for (int i = 0; i < len; i++) { bs2.Add(a[i]); } for (int i = 0; i < range; i++ ) { cout << i << " count = " << bs2.Get(i) << endl; } } void test_case2() { int a[] = {1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 7, 8}; int range = 10; test_default2(a, sizeof(a) / 4, range); } int main() { test_case1(); test_case2(); return 0; } /* ===Bitset1=== 0 count = 0 1 count = 1 2 count = 1 3 count = 1 4 count = 1 5 count = 1 6 count = 0 7 count = 1 8 count = 1 9 count = 0 ===Bitset2=== 0 count = 0 1 count = 1 2 count = 2 3 count = 3 4 count = 3 5 count = 1 6 count = 0 7 count = 1 8 count = 1 9 count = 0 */ |
【其它题目】
1.给40亿个不重复的unsigned int的整数,没排过序的,然后再给几个数,如何快速判断这几个数是否在那40亿个数当中?
unsigned int 的取值范围是0到2^32-1。我们可以申请连续的2^32/8=512M的内存,用每一个bit对应一个unsigned int数字。首先将512M内存都初始化为0,然后每处理一个数字就将其对应的bit设置为1。当需要查询时,直接找到对应bit,看其值是0还是1即可。
2.有1到10w这10w个数,去除2个并打乱次序,如何找出那两个数?
申请10w个bit的空间,每个bit代表一个数字是否出现过。开始时将这10w个bit都初始化为0,表示所有数字都没有出现过。然后依次读入已经打乱循序的数字,并将对应的bit设为1。当处理完所有数字后,根据为0的bit得出没有出现的数字。
【参考】
http://blog.csdn.net/jirongzi_cs2011/article/details/9331003
http://www.cnblogs.com/pangxiaodong/archive/2011/08/14/2137748.html