【练习赛补题】poj 3026 Borg Maze 【bfs+最小生成树】【坑~】
Description
The Borg is an immensely powerful race of enhanced humanoids from the delta quadrant of the galaxy. The Borg collective is the term used to describe the group consciousness of the Borg civilization. Each Borg individual is linked to the collective by a sophisticated subspace network that insures each member is given constant supervision and guidance.
Your task is to help the Borg (yes, really) by developing a program which helps the Borg to estimate the minimal cost of scanning a maze for the assimilation of aliens hiding in the maze, by moving in north, west, east, and south steps. The tricky thing is that the beginning of the search is conducted by a large group of over 100 individuals. Whenever an alien is assimilated, or at the beginning of the search, the group may split in two or more groups (but their consciousness is still collective.). The cost of searching a maze is definied as the total distance covered by all the groups involved in the search together. That is, if the original group walks five steps, then splits into two groups each walking three steps, the total distance is 11=5+3+3.
Your task is to help the Borg (yes, really) by developing a program which helps the Borg to estimate the minimal cost of scanning a maze for the assimilation of aliens hiding in the maze, by moving in north, west, east, and south steps. The tricky thing is that the beginning of the search is conducted by a large group of over 100 individuals. Whenever an alien is assimilated, or at the beginning of the search, the group may split in two or more groups (but their consciousness is still collective.). The cost of searching a maze is definied as the total distance covered by all the groups involved in the search together. That is, if the original group walks five steps, then splits into two groups each walking three steps, the total distance is 11=5+3+3.
Input
On the first line of input there is one integer, N <= 50, giving the number of test cases in the input. Each test case starts with a line containg two integers x, y such that 1 <= x,y <= 50. After this, y lines follow, each which x characters. For each character, a space `` '' stands for an open space, a hash mark ``#'' stands for an obstructing wall, the capital letter ``A'' stand for an alien, and the capital letter ``S'' stands for the start of the search. The perimeter of the maze is always closed, i.e., there is no way to get out from the coordinate of the ``S''. At most 100 aliens are present in the maze, and everyone is reachable.
Output
For every test case, output one line containing the minimal cost of a succesful search of the maze leaving no aliens alive.
Sample Input
2 6 5 ##### #A#A## # # A# #S ## ##### 7 7 ##### #AAA### # A# # S ### # # #AAA### #####
Sample Output
8 11
先大致翻译一遍:在一个地图中,S要去到达每一个A,而S从一开始就可以分开各自去到达A,求出S到达每个A的总的最小步数。
题意:读入一个字符矩阵,求出联通所有A和S的最小生成树权值,S只有一个。
思路:读入字符图str,将字符图中的所有A和S进行编号(不用管S编号是否为1,因为用最小生成树计算最小路径权值会到达每一个顶点),遍历字符图,遇到A或S就进行BFS,BFS过程中,如果遇到A或S,就将步数存入
一个map图(存编号路径的权值),最后套用prime模板,输出。
注意:1.读入的时候,有n多空格的数据出现,不能用%c进行读,正解是gets
2.BFS时注意搜索除了#以外的所有顶点
~~~~这道题自己写了两天,因为用一个比较耗时的方法去写,一直tle,但是自己始终觉得可以优化,最后还是tle~~后来小伙伴也A了这道题,就借鉴了他的思路。
我是的tle思路(hhh 奇怪的思路)是将每个编号顶点都进行遍历查找,而小伙伴的方法是遇到一个编号顶点就整张图进行遍历,只要在遍历过程中遇到了满足要求的点就存入,大大降低查找时间,真是一个悲伤的tle~~
#include<stdio.h> #include<queue> #include<iostream> #include<string.h> using namespace std; #define inf 0x3f3f3f3f #define N 155 int map[N][N],book[55][55],e[55][55]; char str[55][55];//存储字符图 int n,m,sum,count1; int k[4][2]={0,1,0,-1,1,0,-1,0}; struct node{ int x,y,step; }; int BFS(int sx,int sy,int sn) { int en,x,y,nx,ny,i; node start,tail,head; memset(book,0,sizeof(book));//每次查找图都要进行清空 queue<node>Q; start.step = 0; start.x = sx; start.y = sy; Q.push(start); while(!Q.empty()) { head = Q.front(); Q.pop(); for(i = 0; i < 4; i ++) { tail.x = head.x + k[i][0]; tail.y = head.y + k[i][1]; if(tail.x < 0||tail.x > n-1||tail.y < 0||tail.y > m-1) continue; if(!book[tail.x][tail.y]&&str[tail.x][tail.y]!='#') { book[tail.x][tail.y] = 1; tail.step = head.step+ 1; Q.push(tail); if(str[tail.x][tail.y] == 'A'||str[tail.x][tail.y] == 'S') {//遇到符合条件的点就将起点到终点编号的权值存入map图 en = e[tail.x][tail.y]; map[sn][en] = tail.step; } } } } } void Getmap() { int i,j; count1 = 0; memset(e,0,sizeof(e)); for(i = 0; i < n; i ++) for(j = 0; j < m; j ++) if((str[i][j]=='A'||str[i][j] == 'S')) { e[i][j] = ++count1;//对符合条件的字符进行编号 } for(i = 0; i < n; i ++) for(j = 0; j < m; j ++) { if(str[i][j] == 'A'||str[i][j] == 'S')//遇到符合条件的字符就进行BFS { BFS(i,j,e[i][j]); } } } int Prime()//prime模板 { int i,j,u,dis[N],flag[N],min; memset(flag,0,sizeof(flag)); sum = 0; flag[1] = 1; for(i = 1; i <= count1; i ++) dis[i] = map[1][i]; for(i = 1; i < count1; i ++) { min = inf; for(j = 1; j <= count1; j ++) if(!flag[j]&&dis[j] < min) { min = dis[j]; u = j; } flag[u] = 1; sum += dis[u]; for(j = 1; j <= count1; j ++) if(!flag[j]&&dis[j] > map[u][j]) dis[j] = map[u][j]; } return sum; } int main() { int t,i,j; scanf("%d",&t); while(t --) { scanf("%d%d",&m,&n); gets(str[0]); for(i = 0; i < n; i ++)//读图一定注意,坑~~ gets(str[i]); Getmap();//建图 printf("%d\n",Prime());//输出最小生成树权值 } return 0; }