一、线程池概述
1、简介
线程池(英语: thread pool):一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价。线程池不仅能够保证内核的充分利用,还能防止过分调度。
例子: 10 年前单核 CPU 电脑,假的多线程,像马戏团小丑玩多个球, CPU 需要来回切换。 现在是多核电脑,多个线程各自跑在独立的 CPU 上,不用切换效率高。
2、优势
线程池做的工作只要是控制运行的线程数量,处理过程中将任务放入队列,然后在线程创建后启动这些任务,如果线程数量超过了最大数量,超出数量的线程排队等候,等其他线程执行完毕,再从队列中取出任务来执行。
3、特点
二、线程池架构
1、线程池架构
三、线程池使用方式
线程池的种类与创建
1、Executors.newFixedThreadPool(int nThreads): 一池N线程(常用)
作用:创建一个可重用固定线程数的线程池,以共享的无界队列方式来运行这些线程。在任意点,在大多数线程会处于处理任务的活动状态。如果在所有线程处于活动状态时提交附加任务,则在有可用线程之前,附加任务将在队列中等待。如果在关闭前的执行期间由于失败而导致任何线程终止,那么一个新线程将代替它执行后续的任务(如果需要)。在某个线程被显式地关闭之前,池中的线程将一直存在。
特征:
创建方式:
/**
* 固定长度线程池
* @return
*/
public static ExecutorService newFixedThreadPool(){
/**
* corePoolSize 线程池的核心线程数
* maximumPoolSize 能容纳的最大线程数
* keepAliveTime 空闲线程存活时间
* unit 存活的时间单位
* workQueue 存放提交但未执行任务的队列
* threadFactory 创建线程的工厂类:可以省略
* handler 等待队列满后的拒绝策略:可以省略
*/
return new ThreadPoolExecutor(10,
10,
0L,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy());
}
场景:适用于可以预测线程数量的业务中,或者服务器负载较重,对线程数有严格限制的场景。
2、Executors.newSingleThreadExecutor():一个任务一个任务执行,一池一线程(常用)
作用:创建一个使用单个 worker 线程的 Executor,以无界队列方式来运行该线程。(注意,如果因为在关闭前的执行期间出现失败而终止了此单个线程,那么如果需要,一个新线程将代替它执行后续的任务)。可保证顺序地执行各
个任务,并且在任意给定的时间不会有多个线程是活动的。与其他等效的newFixedThreadPool 不同,可保证无需重新配置此方法所返回的执行程序即可使用其他的线程。
特征:线程池中最多执行 1 个线程,之后提交的线程活动将会排在队列中以此执行。
创建方式:
/**
* 单一线程池
* @return
*/
public static ExecutorService newSingleThreadExecutor(){
/**
* corePoolSize 线程池的核心线程数
* maximumPoolSize 能容纳的最大线程数
* keepAliveTime 空闲线程存活时间
* unit 存活的时间单位
* workQueue 存放提交但未执行任务的队列
* threadFactory 创建线程的工厂类:可以省略
* handler 等待队列满后的拒绝策略:可以省略
*/
return new ThreadPoolExecutor(1,
1,
0L,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy());
}
场景:适用于需要保证顺序执行各个任务,并且在任意时间点,不会同时有多个线程的场景。
3、Executors.newCachedThreadPool():线程池根据需求创建线程,可扩容,遇强则强
作用:创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
特点:
① 线程池中数量没有固定,可达到最大值(Interger. MAX_VALUE)
② 线程池中的线程可进行缓存重复利用和回收(回收默认时间为 1 分钟)
③ 当线程池中,没有可用线程,会重新创建一个线程;
创建方式:
/**
* 可缓存线程池
* @return
*/
public static ExecutorService newCachedThreadPool(){
/**
* corePoolSize 线程池的核心线程数
* maximumPoolSize 能容纳的最大线程数
* keepAliveTime 空闲线程存活时间
* unit 存活的时间单位
* workQueue 存放提交但未执行任务的队列
* threadFactory 创建线程的工厂类:可以省略
* handler 等待队列满后的拒绝策略:可以省略
*/
return new ThreadPoolExecutor(0,
Integer.MAX_VALUE,
60L,
TimeUnit.SECONDS,
new SynchronousQueue<>(),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy());
}
场景:适用于创建一个可无限扩大的线程池,服务器负载压力较轻,执行时间较短,任务多的场景。
4、Executors.newScheduleThreadPool(了解)
作用:线程池支持定时以及周期性执行任务,创建一个 corePoolSize 为传入参数,最大线程数为整形的最大数的线程池
特征:
① 线程池中具有指定数量的线程,即便是空线程也将保留;
② 可定时或者延迟执行线程活动;
创建方式:
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize, ThreadFactory threadFactory) {
return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
}
场景:适用于需要多个后台线程执行周期任务的场景。
5、EXecutors.newWorkStealingPool
jdk1.8 提供的线程池,底层使用的是 ForkJoinPool 实现,创建一个拥有多个任务队列的线程池,可以减少连接数,创建当前可用 cpu 核数的线程来并行执行任务。
创建方式:
public static ExecutorService newWorkStealingPool(int parallelism) {
/**
* parallelism:并行级别,通常默认为 JVM 可用的处理器个数
* factory:用于创建 ForkJoinPool 中使用的线程。
* handler:用于处理工作线程未处理的异常,默认为 null
* asyncMode:用于控制 WorkQueue 的工作模式:队列---反队列
*/
return new ForkJoinPool(parallelism,
ForkJoinPool.defaultForkJoinWorkerThreadFactory,
null,
true);
}
场景:适用于大耗时,可并行执行的场景
示例代码:
//演示线程池三种常用分类
public class ThreadPoolDemo1 {
public static void main(String[] args) {
//一池五线程
ExecutorService threadPool1 = Executors.newFixedThreadPool(5); //类似于银行5个受理窗口
//一池一线程
ExecutorService threadPool2 = Executors.newSingleThreadExecutor(); //类似于银行1个受理窗口
//一池可扩容线程
ExecutorService threadPool3 = Executors.newCachedThreadPool(); //一个银行网点,可扩展受理业务的窗口
//10个顾客请求
try {
for (int i = 1; i <=10; i++) {
//执行
threadPool3.execute(()->{
System.out.println(Thread.currentThread().getName()+" 办理业务");
});
}
}catch (Exception e) {
e.printStackTrace();
}finally {
//关闭,返回线程
threadPool3.shutdown();
}
}
}
四、线程池底层原理
来看一下上面常用的三个线程池的底层实现:
(1)newFixedThreadPool
newFixedThreadPool创建的线程池corePoolSize和maximumPoolSize值是相等的,阻塞队列它使用的是LinkedBlockingQueue。
(2)newSingleThreadExecutor
newSingleThreadExecutor 创建的线程池corePoolSize和maximumPoolSize值都是1,它使用的是LinkedBlockingQueue。
(3)newCachedThreadPool
newCachedThreadPool创建的线程池将corePoolSize设置为0,将maximumPoolSize设置为Integer.MAX_VALUE,它使用的是SynchronousQueue,也就是说来了任务就创建线程运行,当线程空闲超过60秒,就销毁线程。
可以看到这三中线程池创建都是使用 ThreadPoolExecutors。
五、线程池的七个参数
ThreadPoolExecutors 的全参构造函数:
七个参数说明:(重点)
1、corePoolSize:线程池中的常驻核心线程数2、maximumPoolSize:线程池中能够容纳同时执行的最大线程数,此值必须大于等于13、keepAliveTime:多余的空闲线程的存活时间,当前池中线程数量超过 corePoolSize时,当空闲时间达到 keepAliveTime 时,多余线程会被销毁直到只剩下 corePoolSize 个线程为止4、unit:keepAliveTime 的单位,TimeUnit 类中的类型5、workQueue:任务队列,被提交但尚未被执行的任务6、ThreadFactory:表示生成线程池中工作线程的线程工厂,用于创建线程,一般默认的即可。7、Handler:拒绝策略,表示当队列满了,并且工作线程大于等于线程池的最大线程数(maximumPoolSize) 时如何来拒绝请求执行的 Runnable 的策略。
七个参数(重点)
• corePoolSize 线程池的核心线程数
• maximumPoolSize 能容纳的最大线程数
• keepAliveTime 空闲线程存活时间
• unit 存活的时间单位
• workQueue 存放提交但未执行任务的队列
• threadFactory 创建线程的工厂类
• handler 等待队列满后的拒绝策略
线程池中,有三个重要的参数,决定影响了拒绝策略:
corePoolSize - 核心线程数,也即最小的线程数。
workQueue - 阻塞队列 。
maximumPoolSize - 最大线程数。
当提交任务数大于 corePoolSize 的时候,会优先将任务放到 workQueue 阻塞队列中。当阻塞队列饱和后,会扩充线程池中线程数,直到达到 maximumPoolSize 最大线程数配置。此时,再多余的任务,则会触发线程池的拒绝策略了。
总结起来,也就是一句话, 当提交的任务数大于(workQueue.size() + maximumPoolSize ),就会触发线程池的拒绝策略。
六、线程池的工作流程(重要)
七、线程池的拒绝策略
1、拒绝策略是什么
2、JDK 的内置的拒绝策略(重点)
我们也可以实现该接口自定义拒绝策略,例如可以把线程持久化下来,通过定时任务来执行。
源码:
/* Predefined RejectedExecutionHandlers */
/**
* A handler for rejected tasks that runs the rejected task
* directly in the calling thread of the {@code execute} method,
* unless the executor has been shut down, in which case the task
* is discarded.
*/
public static class CallerRunsPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code CallerRunsPolicy}.
*/
public CallerRunsPolicy() { }
/**
* Executes task r in the caller's thread, unless the executor
* has been shut down, in which case the task is discarded.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
r.run();
}
}
}
/**
* A handler for rejected tasks that throws a
* {@code RejectedExecutionException}.
*/
public static class AbortPolicy implements RejectedExecutionHandler {
/**
* Creates an {@code AbortPolicy}.
*/
public AbortPolicy() { }
/**
* Always throws RejectedExecutionException.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
* @throws RejectedExecutionException always
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
}
/**
* A handler for rejected tasks that silently discards the
* rejected task.
*/
public static class DiscardPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code DiscardPolicy}.
*/
public DiscardPolicy() { }
/**
* Does nothing, which has the effect of discarding task r.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
}
}
/**
* A handler for rejected tasks that discards the oldest unhandled
* request and then retries {@code execute}, unless the executor
* is shut down, in which case the task is discarded.
*/
public static class DiscardOldestPolicy implements RejectedExecutionHandler {
/**
* Creates a {@code DiscardOldestPolicy} for the given executor.
*/
public DiscardOldestPolicy() { }
/**
* Obtains and ignores the next task that the executor
* would otherwise execute, if one is immediately available,
* and then retries execution of task r, unless the executor
* is shut down, in which case task r is instead discarded.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
e.getQueue().poll();
e.execute(r);
}
}
}
七、自定义线程池
1、在工作中单一的/固定数的/可变的三种创建线程池的方法哪个用的多?
项目中创建多线程时,使用常见的三种线程池创建方式,单一、可变、定长都有一定问题,原因是 FixedThreadPool 和 SingleThreadExecutor 底层都是用LinkedBlockingQueue 实现的,这个队列最大长度为 Integer.MAX_VALUE,容易导致 OOM。所以实际生产一般自己通过 ThreadPoolExecutor 的 7 个参数,自定义线程池。
2、在工作中如何使用线程池,是否自定义过线程池
创建线程池推荐适用 ThreadPoolExecutor 及其 7 个参数手动创建
corePoolSize 线程池的核心线程数
maximumPoolSize 能容纳的最大线程数
keepAliveTime 空闲线程存活时间
unit 存活的时间单位
workQueue 存放提交但未执行任务的队列
threadFactory 创建线程的工厂类
handler 等待队列满后的拒绝策略
自定义线程池:
//自定义线程池创建
public class ThreadPoolDemo2 {
public static void main(String[] args) {
ExecutorService threadPool = new ThreadPoolExecutor(
2,
5,
2L,
TimeUnit.SECONDS,
new ArrayBlockingQueue<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy()
);
//10个顾客请求
try {
for (int i = 1; i <=10; i++) {
//执行
threadPool.execute(()->{
System.out.println(Thread.currentThread().getName()+" 办理业务");
});
}
}catch (Exception e) {
e.printStackTrace();
}finally {
//关闭
threadPool.shutdown();
}
}
}