剑指offer--3题

题目:输入一个整形数组,数组里有正数也有负数。数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。求所有子数组的和的最大值。要求时间复杂度为O(n)

例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18

第一感觉:看到这道题后,我先想的便是列出所有子数组,求取和再在这些和中求取最大值,这肯定是最简单的了!自己所写的代码如下:

#include "stdafx.h"
#include <iostream>

int SubArraySumMax(int arr[], int len);

using namespace std;

int main(int argc, char* argv[])
{
    int arr[] = {1, -2, 3, 10, -4, 7, 2, -5};
    int summax = SubArraySumMax(arr,8);
    cout<<summax<<endl;
    return 0;
}

int SubArraySumMax(int arr[], int len)
{
    int i,j;
    int summax = 0;
    int sum_temp;
    for(i=0; i<len; i++)
    {
        if(summax < arr[i])
            summax = arr[i];
        sum_temp = arr[i];
        for(j=i+1; j<len; j++)
        {
            sum_temp += arr[j];
            if(sum_temp > summax)
                summax = sum_temp;
        }

    }

    return summax;
}

但是这样的思路,其时间复杂度为O(n^2),完全不符合题目所要求的O(n)。自己绞尽脑汁也未能想出更好的办法。。。

在看过标准答案后,惊叹于思想+代码的简单,不过很遗憾,自己并未豁然开朗。

关键未明白为什么可以这样做?根据评论,作者可能使用了所谓“动态规划”(DP)的方法,这应该是数据结构中的知识,看来自己还是井底之蛙,还要继续努力!

 

标准答案:

// jianzhioffer3.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include <iostream>
//int SubArraySumMax(int arr[], int len);
bool FindGreatestSumOfSubArray
(
      int *pData,           // an array
      unsigned int nLength, // the length of array
      int &nGreatestSum     // the greatest sum of all sub-arrays
);
using namespace std;

/*int main(int argc, char* argv[])
{
    int arr[] = {1, -2, 3, 10, -4, 7, 2, -5};
    int summax = SubArraySumMax(arr,8);
    cout<<summax<<endl;
    return 0;
}

int SubArraySumMax(int arr[], int len)
{
    int i,j;
    int summax = 0;
    int sum_temp;
    for(i=0; i<len; i++)
    {
        if(summax < arr[i])
            summax = arr[i];
        sum_temp = arr[i];
        for(j=i+1; j<len; j++)
        {
            sum_temp += arr[j];
            if(sum_temp > summax)
                summax = sum_temp;
        }

    }

    return summax;
}*/

int main()
{
    int arr[] = {1, -2, 3, 10, -4, 7, 2, -5};
    int nLength = 8;
    int nGreatestSum;
    bool IfSuccess = FindGreatestSumOfSubArray(arr,nLength,nGreatestSum);
    if(IfSuccess)
        cout<<nGreatestSum<<endl;
    else
        cout<<"Input Error!"<<endl;
    return 0;
}

/////////////////////////////////////////////////////////////////////////////
// Find the greatest sum of all sub-arrays
// Return value: if the input is valid, return true, otherwise return false
/////////////////////////////////////////////////////////////////////////////
bool FindGreatestSumOfSubArray
(
      int *pData,           // an array
      unsigned int nLength, // the length of array
      int &nGreatestSum     // the greatest sum of all sub-arrays
)
{
      // if the input is invalid, return false
      if((pData == NULL) || (nLength == 0))
            return false;

      int nCurSum = nGreatestSum = 0;
      for(unsigned int i = 0; i < nLength; ++i)
      {
            nCurSum += pData[i];

            // if the current sum is negative, discard it
            if(nCurSum < 0)
                  nCurSum = 0;

            // if a greater sum is found, update the greatest sum
            if(nCurSum > nGreatestSum)
                  nGreatestSum = nCurSum;

      }

 
      // if all data are negative, find the greatest element in the array
      if(nGreatestSum == 0)
      {
            nGreatestSum = pData[0];
            for(unsigned int i = 1; i < nLength; ++i)
            {
                  if(pData[i] > nGreatestSum)
                        nGreatestSum = pData[i];
            }
      }

      return true;
} 

PS:理解DP后,再来解决它!

posted on 2013-07-18 09:49  -赶鸭子上架-  阅读(274)  评论(0编辑  收藏  举报