【洛谷P1297】单选错位【期望】

题目大意:

题目链接:https://www.luogu.org/problemnew/show/P1297
nn道单选题,第ii道题有aia_i个选项,在1ai1\sim a_i中随机选择一个选项写到第i+1i+1题的答案上。其中第nn题写道第一题的答案上。求做对题数的期望。


思路:

分类讨论一下。

  • ai=ai+1a_i=a_{i+1},那么显然随机的答案在第i+1i+1题也是随机的。期望为1ai\frac{1}{a_i},也就是1ai+1\frac{1}{a_{i+1}}
  • ai>ai+1a_i>a_{i+1},只有ai+1ai\frac{a_{i+1}}{a_i}的概率答案在1ai+11\sim a_{i+1}中。所以期望为ai+1ai×1ai+1=1ai\frac{a_{i+1}}{a_i}\times \frac{1}{a_{i+1}}=\frac{1}{a_i}
  • ai<ai+1a_i<a_{i+1},由于随机的答案只在1ai1\sim a_i中,而第i+1i+1题正确答案有aiai+1\frac{a_i}{a_{i+1}}的概率在1ai1\sim a_i中,所以期望为aiai+1×1ai=1ai+1\frac{a_i}{a_{i+1}}\times \frac{1}{a_i}=\frac{1}{a_{i+1}}

综上,答案就是i=1n1max(ai,ai+1)\sum^{n}_{i=1}\frac{1}{max(a_i,a_{i+1})}


代码:

#include <cstdio>
#include <iostream>
using namespace std;

const int N=10000010;
int n,a[N];
double ans;

void init()  //题目给出的生成数据的方法
{
	int A,B,C;
	scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1);
	for (int i=2;i<=n;i++)
		a[i] = ((long long)a[i-1] * A + B) % 100000001;
	for (int i=1;i<=n;i++)
		a[i] = a[i] % C + 1;
}

int main()
{
	init();
	a[n+1]=a[1];
	/*printf("a数组如下:\n");
	for (int i=1;i<=n;i++)
		printf("%d ",a[i]);printf("\n\n");*/
	for (int i=1;i<=n;i++)
		ans+=1/(double)max(a[i],a[i+1]);
	printf("%0.3lf",ans);
	return 0; 
}
posted @ 2019-02-27 16:56  全OI最菜  阅读(109)  评论(0编辑  收藏  举报