【牛客练习赛51】E - 数列【思维】【模拟】

前言

考的好差qwqqwq
第三题一开始被数据范围坑了,没有考虑n=0n=0的情况,然后就多罚时了3次qwqqwq
在这里插入图片描述


题目大意:

题目链接:https://ac.nowcoder.com/acm/contest/1083/E
小乔有一个长度为nn的整数数列,最开始里面所有的值都为0,小乔需要将在1n1…n的每一个位置填入一个大于0的正整数,得到一个新的数列,并且这个数列所有数的和不超过mm,小乔对这个数列会有一个喜爱度,小乔对这个数列的喜爱度为满足2in2\leq i\leq n并且a[i]=a[i1]+1a[i]=a[i-1]+1的i的个数。现在给出n,mn,m,请你制定一种填数方案,最大化小乔对数列的喜爱度。方案可能有多种,你只需要输出任意一种即可。


思路:

WYC orzWYC\ orz
一开始写了一个假的递归,感觉复杂度是O(mlogm)O(\sqrt{m}\log m)的,但是是假的还跑不过最大数据。。。
然后WYCjulaoWYCjulao就在比赛上A了这道题orzorzorzorz
首先把每一个位置都填上1,因为nmn\leq m,所以直接m=nm-=n
然后显然最终答案是一段一段连续上升的,所以我们就枚举最终有多少段。
显然如果有ii段,那么答案的贡献就是nin-i。所以对于枚举的每一种段数,答案贡献都是一样的,我们只需要知道最小的和是多少。
那么明显让每一段的长度尽量相同是可以让和最小的。所以这样我们就可以计算出每一段的长度以及最小的sumsum
那么如果summsum\leq m就直接输出即可。因为已经保证了贡献尽量大。


代码:

#include <cstdio>
using namespace std;

const int N=100010;
int n,m,T,P,sum,s;

int main()
{
	scanf("%d%d",&n,&m);
	m-=n;
	for (int i=1;i<=n;i++)
	{
		T=(n-i)/i; P=(n-i)%i;
		sum=P*(T+1)*(T+2)/2+(i-P)*T*(T+1)/2;
		if (sum<=m)
		{
			for (int j=1;j<=P;j++)
				for (int k=1;k<=T+2;k++)
					printf("%d ",k);
			for (int j=1;j<=i-P;j++)
				for (int k=1;k<=T+1;k++)
					printf("%d ",k);
			return 0;
		}
	}
}
posted @ 2019-09-07 07:27  全OI最菜  阅读(114)  评论(0编辑  收藏  举报