【牛客小白月赛17】J - 计数【数论,数学】

题目大意:

题目链接:https://ac.nowcoder.com/acm/contest/1085/J
有一个含有nn个数字的序列,每个数的大小是不超过10001000的正整数,同时这个序列是个单调不增序列。但是很不幸的是,序列在保存过程中有些数字丢失了,请你根据上述条件,计算出有多少种不同的序列满足上述条件,答案对10000000071000000007取模。(具体可以看样例)


思路:

首先题目要求一个单调不增序列,套路性的把位置ii上的数字加上ni+1n-i+1。这样就转变成了一个单调递减序列。
那么对于位置i,ji,j的两个已知数字,如果(i,j)(i,j)中全部是未知数字,那么显然我们就需要在¥a[i],a[i+1]...a[j1],a[j]a[i],a[i+1]...a[j-1],a[j]a[i]a[j]1a[i]-a[j]-1个数字中选出ji1j-i-1个数字,满足这些数字排序后单调递减。
显然这就是Ca[i]a[j]1ji1C_{a[i]-a[j]-1}^{j-i-1}。因为组合是满足互不相同的。
为了方便,就在aa中加入n,0n,0两个元素,注意nn00都是要加上ni+1n-i+1的。


代码:

#include <cstdio>
using namespace std;
typedef long long ll;

const int N=1000010,MOD=1000000007;
ll a[N],last,f[N*2],ans;
int n;

ll power(ll x,ll k)
{
	ll s=1;
	for (;k;k>>=1,x=x*x%MOD)
		if (k&1) s=s*x%MOD;
	return s;
}

ll C(ll x,ll y)
{
	if (x<y) return 0;
	ll inv=power(f[y]*f[x-y]%MOD,MOD-2);
	return f[x]*inv%MOD;
}

int main()
{
	f[0]=1;
	for (int i=1;i<=N+2000;i++)
		f[i]=f[i-1]*i%MOD;
	scanf("%d",&n); n+=2;
	a[1]=1000+n;
	for (int i=2;i<n;i++)
	{
		scanf("%d",&a[i]);
		if (a[i]) a[i]+=(n-i+1);
	}
	a[n]=2;
	ans=1;
	for (int i=1;i<=n;i++)
		if (a[i])
		{
			if (last) ans=ans*C(a[last]-a[i]-1,i-last-1)%MOD;
			last=i;
		}
	printf("%lld",ans);
	return 0;
}
posted @ 2019-09-13 22:29  全OI最菜  阅读(224)  评论(0编辑  收藏  举报