『TensorFlow』读书笔记_Inception_V3_下

极为庞大的网络结构,不过下一节的ResNet也不小

线性的组成,结构大体如下:

常规卷积部分->Inception模块组1->Inception模块组2->Inception模块组3->池化->1*1卷积(实现个线性变换)->分类器

                                                                                |_>辅助分类器

 

代码如下,

# Author : Hellcat
# Time   : 2017/12/12
# refer  : https://github.com/tensorflow/models/
#          blob/master/research/inception/inception/slim/inception_model.py

import time
import math
import tensorflow as tf
from datetime import datetime

slim = tf.contrib.slim
# 截断误差初始化生成器
trunc_normal = lambda stddev:tf.truncated_normal_initializer(0.0,stddev)

def inception_v3_arg_scope(weight_decay=0.00004,
                           stddv=0.1,
                           batch_norm_var_collection='moving_vars'):
    '''
    网络常用函数默认参数生成
    :param weight_decay: L2正则化decay
    :param stddv: 标准差
    :param batch_norm_var_collection: 
    :return: 
    '''
    batch_norm_params = {
        'decay':0.9997,                                          # 衰减系数
        'epsilon':0.001,
        'updates_collections':{
            'bate':None,
            'gamma':None,
            'moving_mean':[batch_norm_var_collection],          # 批次均值
            'moving_variance':[batch_norm_var_collection]       # 批次方差
        }
    }
    # 外层环境
    with slim.arg_scope([slim.conv2d,slim.fully_connected],
                        # 权重正则化函数
                        weights_regularizer=slim.l2_regularizer(weight_decay)):
        # 内层环境
        with slim.arg_scope([slim.conv2d],
                            # 权重初始化函数
                            weights_initializer=tf.truncated_normal_initializer(stddev=stddv),
                            # 激活函数,默认为nn.relu
                            activation_fn=tf.nn.relu,
                            # 正则化函数,默认为None
                            normalizer_fn=slim.batch_norm,
                            # 正则化函数参数,字典形式
                            normalizer_params=batch_norm_params) as sc:
            return sc

def inception_v3_base(inputs,scope=None):
    # 保存关键节点
    end_points = {}
    # 重载作用域的名称,创建新的作用域名称(前面是None时使用),输入tensor
    with tf.variable_scope(scope,'Inception_v3',[inputs]):
        with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],
                            stride=1,padding='VALID'):
            # 299*299*3

            net = slim.conv2d(inputs,32,[3,3],stride=2,scope='Conv2d_1a_3x3')          # 149*149*32
            net = slim.conv2d(net,32,[3,3],scope='Conv2d_2a_3x3')                      # 147*147*32
            net = slim.conv2d(net,64,[3,3],padding='SAME',scope='Conv2d_2b_3x3')       # 147*147*64
            net = slim.max_pool2d(net,[3,3],stride=2,scope='MaxPool_3a_3x3')           # 73*73*64
            net = slim.conv2d(net,80,[1,1],scope='Conv2d_3b_1x1')                      # 73*73*80
            net = slim.conv2d(net,192,[1,1],scope='Conv2d_4a_3x3')                     # 71*71*192
            net = slim.max_pool2d(net,[3,3],stride=2,scope='MaxPool_5a_3x3')           # 35*35*192

        with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],
                            stride=1,padding='SAME'):
            '''Inception 第一模组块'''
            # Inception_Module_1
            with tf.variable_scope('Mixed_5b'):                                        # 35*35*256
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net,48,[1,1],scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,64,[5,5],scope='Conv2d_0b_5x5')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0b_3x3')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0c_3x3')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,32,[1,1],scope='Conv2d_0b_1x1')
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)

            # Inception_Module_2
            with tf.variable_scope('Mixed_5c'):                                        # 35*35*288
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net,48,[1,1],scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,64,[5,5],scope='Conv2d_0b_5x5')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0b_3x3')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0c_3x3')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,64,[1,1],scope='Conv2d_0b_1x1')
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)

            # Inception_Module_3
            with tf.variable_scope('Mixed_5d'):                                        # 35*35*288
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net,48,[1,1],scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,64,[5,5],scope='Conv2d_0b_5x5')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0b_3x3')
                    branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0c_3x3')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,64,[1,1],scope='Conv2d_0b_1x1')
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)

            '''Inception 第二模组块'''
            # Inception_Module_1
            with tf.variable_scope('Mixed_6a'):                                        # 17*17*768
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net,384,[3,3],stride=2,
                                           padding='VALID',scope='Conv2d_1a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,96,[3,3],scope='Conv2d_0b_3x3')
                    branch_1 = slim.conv2d(branch_1,96,[3,3],stride=2,
                                           padding='VALID',scope='Conv2d_1a_3x3')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.max_pool2d(net,[3,3],stride=2,padding='VALID',
                                               scope='Max_Pool_1a_3x3')
                net = tf.concat([branch_0,branch_1,branch_2],axis=3)

            # Inception_Module_2
            with tf.variable_scope('Mixed_6b'):                                        # 17*17*768
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net,128,[1,1],scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,128,[1,7],scope='Conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net,128,[1,1],scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,128,[7,1],scope='Conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2,128,[1,7],scope='Conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2,128,[7,1],scope='Conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)

            # Inception_Module_3
            with tf.variable_scope('Mixed_6c'):                                        # 17*17*768
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,160,[1,7],scope='Conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2,160,[1,7],scope='Conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)

            # Inception_Module_4
            with tf.variable_scope('Mixed_6d'):                                        # 17*17*768
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,160,[1,7],scope='Conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2,160,[1,7],scope='Conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)

            # Inception_Module_5
            with tf.variable_scope('Mixed_6e'):                                        # 17*17*768
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,192,[1,7],scope='Conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,192,[7,1],scope='Conv2d_0b_7x1')
                    branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0c_1x7')
                    branch_2 = slim.conv2d(branch_2,192,[7,1],scope='Conv2d_0d_7x1')
                    branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7')
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)
            end_points['Mixed_6e'] = net

            '''Inception 第三模组块'''
            # Inception_Module_1
            with tf.variable_scope('Mixed_7a'):                                        # 8*8*1280
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                    branch_0 = slim.conv2d(branch_0,320,[3,3],stride=2,
                                           padding='VALID',scope='Conv2d_1a_3x3')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                    branch_1 = slim.conv2d(branch_1,192,[1,7],scope='Conv2d_0b_1x7')
                    branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1')
                    branch_1 = slim.conv2d(branch_1,192,[3,3],stride=2,padding='VALID',scope='Conv2d_1a_3x3')
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.max_pool2d(net,[3,3],stride=2,padding='VALID',
                                               scope='MaxPool_1a_3x3')
                net = tf.concat([branch_0,branch_1,branch_2],3)

            # Inception_Module_2
            with tf.variable_scope('Mixed_7b'):                                        # 8*8*2048
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net,320,[1,1],scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net,384,[1,1],scope='Conv2d_0a_1x1')
                    branch_1 = tf.concat([
                        slim.conv2d(branch_1,384,[1,3],scope='Conv2d_0b_1x3'),
                        slim.conv2d(branch_1,384,[3,1],scope='Conv2d_0b_3x1')],axis=3)
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net,448,[1,1],scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,384,[3,3],scope='Conv2d_0b_3x3')
                    branch_2 = tf.concat([
                        slim.conv2d(branch_2,384,[1,3],scope='Conv2d_0c_1x3'),
                        slim.conv2d(branch_2,384,[3,1],scope='Conv2d_0d_3x1')],axis=3)
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.max_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)

            # Inception_Module_3
            with tf.variable_scope('Mixed_7c'):                                        # 8*8*2048
                with tf.variable_scope('Branch_0'):
                    branch_0 = slim.conv2d(net,320,[1,1],scope='Conv2d_0a_1x1')
                with tf.variable_scope('Branch_1'):
                    branch_1 = slim.conv2d(net,384,[1,1],scope='Conv2d_0a_1x1')
                    branch_1 = tf.concat([
                        slim.conv2d(branch_1,384,[1,3],scope='Conv2d_0b_1x3'),
                        slim.conv2d(branch_1,384,[3,1],scope='Conv2d_0b_3x1')],axis=3)
                with tf.variable_scope('Branch_2'):
                    branch_2 = slim.conv2d(net,448,[1,1],scope='Conv2d_0a_1x1')
                    branch_2 = slim.conv2d(branch_2,384,[3,3],scope='Conv2d_0b_3x3')
                    branch_2 = tf.concat([
                        slim.conv2d(branch_2,384,[1,3],scope='Conv2d_0c_1x3'),
                        slim.conv2d(branch_2,384,[3,1],scope='Conv2d_0d_3x1')],axis=3)
                with tf.variable_scope('Branch_3'):
                    branch_3 = slim.max_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                    branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
            net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)

            return net,end_points

def inception_v3(inputs,
                 num_classes=1000,
                 is_training=True,
                 dropout_keep_prob=0.8,
                 prediction_fn=slim.softmax,
                 spatial_squeeze=True,
                 reuse=None,
                 scope='Inception_v3'):
    with tf.variable_scope(scope,'Inception_v3',[inputs,num_classes],reuse=reuse) as scope:
        with slim.arg_scope([slim.batch_norm,slim.dropout],
                            is_training=is_training):
            net,end_points = inception_v3_base(inputs,scope=scope)
            with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],
                                stride=1,padding='SAME'):
                # 17*17*768
                aux_logits = end_points['Mixed_6e']
                with tf.variable_scope('AuxLogits'):
                    aux_logits = slim.avg_pool2d(aux_logits,[5,5],stride=3,padding='VALID',scope='AvgPool_1a_5x5')
                    aux_logits = slim.conv2d(aux_logits,128,[1,1],scope='Conv2d_1b_1x1')
                    aux_logits = slim.conv2d(aux_logits,768,[5,5],
                                             weights_initializer=trunc_normal(0.01),
                                             padding='VALID',
                                             scope='Conv2d_2a_5x5')
                    aux_logits = slim.conv2d(aux_logits,num_classes,[1,1],activation_fn=None,
                                             normalizer_fn=None,weights_initializer=trunc_normal(0.001),
                                             scope='Conv2d_2b_1x1')
                    if spatial_squeeze:
                        aux_logits = tf.squeeze(aux_logits,[1,2],
                                                name='SpatialSqueeze')
                    end_points['AuxLogits'] = aux_logits
                with tf.variable_scope('Logits'):
                    net = slim.avg_pool2d(net,[8,8],padding='VALID',
                                          scope='AvgPool_1a_8x8')
                    net = slim.dropout(net,keep_prob=dropout_keep_prob,scope='Dropout_1b')
                    end_points['PreLogits'] = net
                    logits = slim.conv2d(net,num_classes,[1,1],activation_fn=None,
                                         normalizer_fn=None,scope='Conv2d_1c_1x1')
                    if spatial_squeeze:
                        logits = tf.squeeze(logits,[1,2],name='SpatialSqueeze')
                    end_points['Logits'] = logits
                    end_points['Predictions'] = prediction_fn(logits,scope='Predictions')
                return logits, end_points

def time_tensorflow_run(session, target, info_string):
    '''
    网路运行时间测试函数
    :param session: 会话对象
    :param target: 运行目标节点
    :param info_string:提示字符 
    :return: None
    '''
    num_steps_burn_in = 10           # 预热轮数
    total_duration = 0.0             # 总时间
    total_duration_squared = 0.0     # 总时间平方和
    for i in range(num_steps_burn_in + num_batches):
        start_time = time.time()
        _ = session.run(target)
        duration = time.time() - start_time # 本轮时间
        if i >= num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(),i-num_steps_burn_in,duration))
                total_duration += duration
                total_duration_squared += duration**2

    mn = total_duration/num_batches   # 平均耗时
    vr = total_duration_squared/num_batches - mn**2
    sd = math.sqrt(vr)
    print('%s:%s across %d steps, %.3f +/- %.3f sec / batch' %
          (datetime.now(), info_string, num_batches, mn, sd))

if __name__ == '__main__':
    batch_size=32
    height,width = 299,299
    inputs = tf.random_uniform((batch_size,height,width,3))
    with slim.arg_scope(inception_v3_arg_scope()):
        logits,end_points = inception_v3(inputs,is_training=False)
    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)
    num_batches = 100
    time_tensorflow_run(sess,logits,'Forward')

运行起来时耗过长,就不贴了。

posted @ 2017-12-18 16:35  叠加态的猫  阅读(2244)  评论(0编辑  收藏  举报