『TensorFlow』批处理类
基础知识
下面有莫凡的对于批处理的解释:
fc_mean,fc_var = tf.nn.moments( Wx_plus_b, axes=[0], # 想要 normalize 的维度, [0] 代表 batch 维度 # 如果是图像数据, 可以传入 [0, 1, 2], 相当于求[batch, height, width] 的均值/方差, 注意不要加入 channel 维度 ) scale = tf.Variable(tf.ones([out_size])) shift = tf.Variable(tf.zeros([out_size])) epsilon = 0.001 Wx_plus_b = tf.nn.batch_normalization(Wx_plus_b,fc_mean,fc_var,shift,scale,epsilon) # 上面那一步, 在做如下事情: # Wx_plus_b = (Wx_plus_b - fc_mean) / tf.sqrt(fc_var + 0.001) # Wx_plus_b = Wx_plus_b * scale + shift
tf.contrib.layers.batch_norm:封装好的批处理类
class batch_norm(): '''batch normalization层''' def __init__(self, epsilon=1e-5, momentum=0.9, name='batch_norm'): ''' 初始化 :param epsilon: 防零极小值 :param momentum: 滑动平均参数 :param name: 节点名称 ''' with tf.variable_scope(name): self.epsilon = epsilon self.momentum = momentum self.name = name def __call__(self, x, train=True): # 一个封装了的会在内部调用batch_normalization进行正则化的高级接口 return tf.contrib.layers.batch_norm(x, decay=self.momentum, # 滑动平均参数 updates_collections=None, epsilon=self.epsilon, scale=True, is_training=train, # 影响滑动平均 scope=self.name)
1.
Note: when training, the moving_mean and moving_variance need to be updated.
By default the update ops are placed in `tf.GraphKeys.UPDATE_OPS`, so they
need to be added as a dependency to the `train_op`. For example:
```python
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss)
```
One can set updates_collections=None to force the updates in place, but that
can have a speed penalty, especially in distributed settings.
2.
is_training: Whether or not the layer is in training mode. In training mode
it would accumulate the statistics of the moments into `moving_mean` and
`moving_variance` using an exponential moving average with the given
`decay`. When it is not in training mode then it would use the values of
the `moving_mean` and the `moving_variance`.
tf.nn.batch_normalization:原始接口封装使用
实际上tf.contrib.layers.batch_norm对于tf.nn.moments和tf.nn.batch_normalization进行了一次封装,这个类又进行了一次封装(主要是制订了一部分默认参数),实际操作时可以仅仅使用tf.contrib.layers.batch_norm函数,它已经足够方便了。
添加了滑动平均处理之后,也就是不使用封装,直接使用tf.nn.moments和tf.nn.batch_normalization实现的batch_norm函数:
def batch_norm(x,beta,gamma,phase_train,scope='bn',decay=0.9,eps=1e-5): with tf.variable_scope(scope): # beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True) # gamma = tf.get_variable(name='gamma', shape=[n_out], # initializer=tf.random_normal_initializer(1.0, stddev), trainable=True) batch_mean,batch_var = tf.nn.moments(x,[0,1,2],name='moments') ema = tf.train.ExponentialMovingAverage(decay=decay) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean,batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean),tf.identity(batch_var) # identity之后会把Variable转换为Tensor并入图中, # 否则由于Variable是独立于Session的,不会被图控制control_dependencies限制 mean,var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean),ema.average(batch_var))) normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps) return normed
另一种将滑动平均展开了的方式,
def batch_norm(x, size, training, decay=0.999): beta = tf.Variable(tf.zeros([size]), name='beta') scale = tf.Variable(tf.ones([size]), name='scale') pop_mean = tf.Variable(tf.zeros([size])) pop_var = tf.Variable(tf.ones([size])) epsilon = 1e-3 batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2]) train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay)) train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay)) def batch_statistics(): with tf.control_dependencies([train_mean, train_var]): return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, scale, epsilon, name='batch_norm') def population_statistics(): return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, scale, epsilon, name='batch_norm') return tf.cond(training, batch_statistics, population_statistics)
注, tf.cond:流程控制,参数一True,则执行参数二的函数,否则执行参数三函数。