Syntax-Aware Network for Handwritten Mathematical Expression Recognition

A Tree-Structured Decoder for Image-to-Markup Generation(https://www.zhuanzhi.ai/document/f09d28ca52b77a13a13bf44a86aba64d)
Handwritten Mathematical Expression Recognition via Attention Aggregation based Bi-directional Mutual Learning

 

思路概览

和A Tree-Structured Decoder for Image-to-Markup Generation思路一致,看起来是为了数学公式增加了一些细致的规则。

 

 

 SAN的工作本质原文描述如下:

The SAN transforms an image into a parse tree, of which the leaf nodes are terminal symbols or relations, and others are non-terminal symbols. There are two non-terminal symbols S and E, where S is the start symbol and servers as the tree’s root.

作者将SAN分成七个组件,G = (N, Σ, R, S, Γ, C, D):

  1. a finite set of nonterminal symbols (N),
  2. 实际latex符号 a finite set of terminal symbols (Σ, non-terminal symbols), contains all symbols that might be used in a LaTeX expression sequence.
  3. 建树规则 a finite set of production rules (R), production rule can be used to construct the parse tree.
  4. 子树起始符,这个应该属于N a start symbol (S, non-terminal symbols), is the start symbol and servers as the tree’s root.
  5. 关系符号 a finite set of relations (Γ),
  6. an encoder (C)
  7. a decoder (D).

父节点类型N(非终端节点)根据生成规则R可以生成一系列终端Σ、非终端N、关系Γ子节点。

建树规则

非终端符号S产生:

1) an arbitrary terminal symbol followed by an S on the right

2) an E

3) an empty string

 

 非终端符号E对Γ中的每种关系产生一个子树,并将这些子树concat起来

 

看到这里就大概明白了作者的意图,起始S符号,然后:

  1. 输出σS,表示当前位置为符号σ,下一个S输出修饰σ的子树
  2. 输出E,表示修饰S兄弟符号σ,递归预测
  3. 输出空,表示S的兄弟符号无需修饰

对于某个字符的关联字符(E位置),节点子树为修饰用,对各种可能的关系进行探索,各个关系平级(结果之间concat)。

下图是生成树的规则示意:

节点推理该率分布表达如下(父节点到子节点,X为图):

相邻符号有九种可能关系:left, right, above, below, low left, low right, upper left, upper right(?)

Latex语法树生成的两个原则:

  1.  It follows the standard reading orders: left-to-right, top-to-down.
  2.  The spatial relations between adjacent symbols are used. 相邻符号之间存在关系符号

解码过程

 

posted @ 2022-07-17 22:18  叠加态的猫  阅读(234)  评论(0编辑  收藏  举报