【中文】【吴恩达课后编程作业】Course 1 - 神经网络和深度学习 - 第三周作业
【吴恩达课后编程作业】Course 1 - 神经网络和深度学习 - 第三周作业 - 带有一个隐藏层的平面数据分类
声明
首先声明本文参考【Kulbear】的github上的文章,本文参考Planar data classification with one hidden layer,我基于他的文章加以自己的理解发表这篇博客,力求让大家以最轻松的姿态理解吴恩达的视频,如有不妥的地方欢迎大家指正。
本文所使用的资料已上传到百度网盘【点击下载】,提取码:qifu,请在开始之前下载好所需资料,或者在本文底部copy资料代码。
【博主使用的python版本:3.6.2】
开始之前
在开始之前,我们简单说一下我们要做什么。我们要建立一个神经网络,它有一个隐藏层。你会发现这个模型和上一个逻辑回归实现的模型有很大的区别。你可以跟随我的步骤在Jupyter Notebook中一步步地把代码填进去,也可以直接复制完整代码,在完整代码在本文底部,testCases.py和planar_utils.py的完整代码也在最底部。在这篇文章中,我们会讲到以下的知识:
- 构建具有单隐藏层的2类分类神经网络。
- 使用具有非线性激活功能激活函数,例如tanh。
- 计算交叉熵损失(损失函数)。
- 实现向前和向后传播。
准备软件包
我们需要准备一些软件包:
- numpy:是用Python进行科学计算的基本软件包。
- sklearn:为数据挖掘和数据分析提供的简单高效的工具。
- matplotlib :是一个用于在Python中绘制图表的库。
- testCases:提供了一些测试示例来评估函数的正确性,参见下载的资料或者在底部查看它的代码。
- planar_utils :提供了在这个任务中使用的各种有用的功能,参见下载的资料或者在底部查看它的代码。
import numpy as np import matplotlib.pyplot as plt from testCases import * import sklearn import sklearn.datasets import sklearn.linear_model from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets #%matplotlib inline #如果你使用用的是Jupyter Notebook的话请取消注释。 np.random.seed(1) #设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的。
加载和查看数据集
首先,我们来看看我们将要使用的数据集, 下面的代码会将一个花的图案的2类数据集加载到变量X和Y中。
X, Y = load_planar_dataset()
把数据集加载完成了,然后使用matplotlib可视化数据集,代码如下:
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral) #绘制散点图 # 上一语句如出现问题,请使用下面的语句: plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral) #绘制散点图
数据看起来像一朵红色(y = 0)和一些蓝色(y = 1)的数据点的花朵的图案。 我们的目标是建立一个模型来适应这些数据。现在,我们已经有了以下的东西:
- X:一个numpy的矩阵,包含了这些数据点的数值
- Y:一个numpy的向量,对应着的是X的标签【0 | 1】(红色:0 , 蓝色 :1)
我们继续来仔细地看数据:
shape_X = X.shape shape_Y = Y.shape m = Y.shape[1] # 训练集里面的数量 print ("X的维度为: " + str(shape_X)) print ("Y的维度为: " + str(shape_Y)) print ("数据集里面的数据有:" + str(m) + " 个")
运行结果为:
X的维度为: (2, 400) Y的维度为: (1, 400) 数据集里面的数据有:400 个
查看简单的Logistic回归的分类效果
在构建完整的神经网络之前,先让我们看看逻辑回归在这个问题上的表现如何,我们可以使用sklearn的内置函数来做到这一点, 运行下面的代码来训练数据集上的逻辑回归分类器。
clf = sklearn.linear_model.LogisticRegressionCV() clf.fit(X.T,Y.T)
这里会打印出以下的信息(不同的机器提示大同小异):
E:\Anaconda3\lib\site-packages\sklearn\utils\validation.py:547: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
我们可以把逻辑回归分类器的分类绘制出来:
plot_decision_boundary(lambda x: clf.predict(x), X, Y) #绘制决策边界 plt.title("Logistic Regression") #图标题 LR_predictions = clf.predict(X.T) #预测结果 print ("逻辑回归的准确性: %d " % float((np.dot(Y, LR_predictions) + np.dot(1 - Y,1 - LR_predictions)) / float(Y.size) * 100) + "% " + "(正确标记的数据点所占的百分比)")
我们看一看都打印了些什么吧!
逻辑回归的准确性: 47 % (正确标记的数据点所占的百分比)
准确性只有47%的原因是数据集不是线性可分的,所以逻辑回归表现不佳,现在我们正式开始构建神经网络。
搭建神经网络
我们要搭建的神经网络模型如下图:
当然还有我们的理论基础(不懂可以去仔细看看视频):
对于
给出所有示例的预测结果,可以按如下方式计算成本J:
构建神经网络的一般方法是:
- 定义神经网络结构(输入单元的数量,隐藏单元的数量等)。
- 初始化模型的参数
- 循环:
- 实施前向传播
- 计算损失
- 实现向后传播
- 更新参数(梯度下降)
我们要它们合并到一个nn_model() 函数中,当我们构建好了nn_model()并学习了正确的参数,我们就可以预测新的数据。
定义神经网络结构
在构建之前,我们要先把神经网络的结构给定义好:
- n_x: 输入层的数量
- n_h: 隐藏层的数量(这里设置为4)
- n_y: 输出层的数量
def layer_sizes(X , Y): """ 参数: X - 输入数据集,维度为(输入的数量,训练/测试的数量) Y - 标签,维度为(输出的数量,训练/测试数量) 返回: n_x - 输入层的数量 n_h - 隐藏层的数量 n_y - 输出层的数量 """ n_x = X.shape[0] #输入层 n_h = 4 #,隐藏层,硬编码为4 n_y = Y.shape[0] #输出层 return (n_x,n_h,n_y)
我们来测试一下:
#测试layer_sizes print("=========================测试layer_sizes=========================") X_asses , Y_asses = layer_sizes_test_case() (n_x,n_h,n_y) = layer_sizes(X_asses,Y_asses) print("输入层的节点数量为: n_x = " + str(n_x)) print("隐藏层的节点数量为: n_h = " + str(n_h)) print("输出层的节点数量为: n_y = " + str(n_y))
运行结果如下:
=========================测试layer_sizes========================= 输入层的节点数量为: n_x = 5 隐藏层的节点数量为: n_h = 4 输出层的节点数量为: n_y = 2
初始化模型的参数
在这里,我们要实现函数initialize_parameters()。我们要确保我们的参数大小合适,如果需要的话,请参考上面的神经网络图。
我们将会用随机值初始化权重矩阵。
np.random.randn(a,b)* 0.01
来随机初始化一个维度为(a,b)的矩阵。
将偏向量初始化为零。
np.zeros((a,b))
用零初始化矩阵(a,b)。
def initialize_parameters( n_x , n_h ,n_y): """ 参数: n_x - 输入层节点的数量 n_h - 隐藏层节点的数量 n_y - 输出层节点的数量 返回: parameters - 包含参数的字典: W1 - 权重矩阵,维度为(n_h,n_x) b1 - 偏向量,维度为(n_h,1) W2 - 权重矩阵,维度为(n_y,n_h) b2 - 偏向量,维度为(n_y,1) """ np.random.seed(2) #指定一个随机种子,以便你的输出与我们的一样。 W1 = np.random.randn(n_h,n_x) * 0.01 b1 = np.zeros(shape=(n_h, 1)) W2 = np.random.randn(n_y,n_h) * 0.01 b2 = np.zeros(shape=(n_y, 1)) #使用断言确保我的数据格式是正确的 assert(W1.shape == ( n_h , n_x )) assert(b1.shape == ( n_h , 1 )) assert(W2.shape == ( n_y , n_h )) assert(b2.shape == ( n_y , 1 )) parameters = {"W1" : W1, "b1" : b1, "W2" : W2, "b2" : b2 } return parameters
测试一下我们的代码:
#测试initialize_parameters print("=========================测试initialize_parameters=========================") n_x , n_h , n_y = initialize_parameters_test_case() parameters = initialize_parameters(n_x , n_h , n_y) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"]))
结果如下:
=========================测试initialize_parameters========================= W1 = [[-0.00416758 -0.00056267] [-0.02136196 0.01640271] [-0.01793436 -0.00841747] [ 0.00502881 -0.01245288]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.01057952 -0.00909008 0.00551454 0.02292208]] b2 = [[ 0.]]
循环
前向传播
我们现在要实现前向传播函数forward_propagation()。
我们可以使用sigmoid()函数,也可以使用np.tanh()函数。
步骤如下:
- 使用字典类型的parameters(它是initialize_parameters() 的输出)检索每个参数。
- 实现向前传播, 计算
和 ( 训练集里面所有例子的预测向量)。 - 反向传播所需的值存储在“cache”中,cache将作为反向传播函数的输入。
def forward_propagation( X , parameters ): """ 参数: X - 维度为(n_x,m)的输入数据。 parameters - 初始化函数(initialize_parameters)的输出 返回: A2 - 使用sigmoid()函数计算的第二次激活后的数值 cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量 """ W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] #前向传播计算A2 Z1 = np.dot(W1 , X) + b1 A1 = np.tanh(Z1) Z2 = np.dot(W2 , A1) + b2 A2 = sigmoid(Z2) #使用断言确保我的数据格式是正确的 assert(A2.shape == (1,X.shape[1])) cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2} return (A2, cache)
测试一下我的这个功能:
#测试forward_propagation print("=========================测试forward_propagation=========================") X_assess, parameters = forward_propagation_test_case() A2, cache = forward_propagation(X_assess, parameters) print(np.mean(cache["Z1"]), np.mean(cache["A1"]), np.mean(cache["Z2"]), np.mean(cache["A2"]))
测试结果如下:
=========================测试forward_propagation========================= -0.000499755777742 -0.000496963353232 0.000438187450959 0.500109546852
现在我们已经计算了
计算损失
计算成本的公式如下:
有很多的方法都可以计算交叉熵损失,比如下面的这个公式,我们在python中可以这么实现:
logprobs = np.multiply(np.log(A2),Y) cost = - np.sum(logprobs) # 不需要使用循环就可以直接算出来。
当然,你也可以使用np.multiply()
然后使用np.sum()
或者直接使用np.dot()
现在我们正式开始构建计算成本的函数:
def compute_cost(A2,Y,parameters): """ 计算方程(6)中给出的交叉熵成本, 参数: A2 - 使用sigmoid()函数计算的第二次激活后的数值 Y - "True"标签向量,维度为(1,数量) parameters - 一个包含W1,B1,W2和B2的字典类型的变量 返回: 成本 - 交叉熵成本给出方程(13) """ m = Y.shape[1] W1 = parameters["W1"] W2 = parameters["W2"] #计算成本 logprobs = logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2)) cost = - np.sum(logprobs) / m cost = float(np.squeeze(cost)) assert(isinstance(cost,float)) return cost
测试一下我们的成本函数:
#测试compute_cost print("=========================测试compute_cost=========================") A2 , Y_assess , parameters = compute_cost_test_case() print("cost = " + str(compute_cost(A2,Y_assess,parameters)))
测试结果如下:
=========================测试compute_cost========================= cost = 0.6929198937761266
使用正向传播期间计算的cache,现在可以利用它实现反向传播。
现在我们要开始实现函数backward_propagation()。
向后传播
说明:反向传播通常是深度学习中最难(数学意义)部分,为了帮助你,这里有反向传播讲座的幻灯片, 由于我们正在构建向量化实现,因此我们将需要使用这下面的六个方程:
为了计算dZ1,里需要计算 (1 - np.power(A1, 2))
来计算
def backward_propagation(parameters,cache,X,Y): """ 使用上述说明搭建反向传播函数。 参数: parameters - 包含我们的参数的一个字典类型的变量。 cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。 X - 输入数据,维度为(2,数量) Y - “True”标签,维度为(1,数量) 返回: grads - 包含W和b的导数一个字典类型的变量。 """ m = X.shape[1] W1 = parameters["W1"] W2 = parameters["W2"] A1 = cache["A1"] A2 = cache["A2"] dZ2= A2 - Y dW2 = (1 / m) * np.dot(dZ2, A1.T) db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True) dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2)) dW1 = (1 / m) * np.dot(dZ1, X.T) db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True) grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2 } return grads
测试一下反向传播函数:
#测试backward_propagation print("=========================测试backward_propagation=========================") parameters, cache, X_assess, Y_assess = backward_propagation_test_case() grads = backward_propagation(parameters, cache, X_assess, Y_assess) print ("dW1 = "+ str(grads["dW1"])) print ("db1 = "+ str(grads["db1"])) print ("dW2 = "+ str(grads["dW2"])) print ("db2 = "+ str(grads["db2"]))
测试结果如下:
=========================测试backward_propagation========================= dW1 = [[ 0.01018708 -0.00708701] [ 0.00873447 -0.0060768 ] [-0.00530847 0.00369379] [-0.02206365 0.01535126]] db1 = [[-0.00069728] [-0.00060606] [ 0.000364 ] [ 0.00151207]] dW2 = [[ 0.00363613 0.03153604 0.01162914 -0.01318316]] db2 = [[ 0.06589489]]
反向传播完成了,我们开始对参数进行更新
更新参数
我们需要使用(dW1, db1, dW2, db2)来更新(W1, b1, W2, b2)。
更新算法如下:
:学习速率 :参数
我们需要选择一个良好的学习速率,我们可以看一下下面这两个图(由Adam Harley提供):
上面两个图分别代表了具有良好学习速率(收敛)和不良学习速率(发散)的梯度下降算法。
def update_parameters(parameters,grads,learning_rate=1.2): """ 使用上面给出的梯度下降更新规则更新参数 参数: parameters - 包含参数的字典类型的变量。 grads - 包含导数值的字典类型的变量。 learning_rate - 学习速率 返回: parameters - 包含更新参数的字典类型的变量。 """ W1,W2 = parameters["W1"],parameters["W2"] b1,b2 = parameters["b1"],parameters["b2"] dW1,dW2 = grads["dW1"],grads["dW2"] db1,db2 = grads["db1"],grads["db2"] W1 = W1 - learning_rate * dW1 b1 = b1 - learning_rate * db1 W2 = W2 - learning_rate * dW2 b2 = b2 - learning_rate * db2 parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters
测试一下update_parameters():
#测试update_parameters print("=========================测试update_parameters=========================") parameters, grads = update_parameters_test_case() parameters = update_parameters(parameters, grads) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"]))
测试结果如下:
=========================测试update_parameters========================= W1 = [[-0.00643025 0.01936718] [-0.02410458 0.03978052] [-0.01653973 -0.02096177] [ 0.01046864 -0.05990141]] b1 = [[ -1.02420756e-06] [ 1.27373948e-05] [ 8.32996807e-07] [ -3.20136836e-06]] W2 = [[-0.01041081 -0.04463285 0.01758031 0.04747113]] b2 = [[ 0.00010457]]
整合
我们现在把上面的东西整合到nn_model()中,神经网络模型必须以正确的顺序使用先前的功能。
def nn_model(X,Y,n_h,num_iterations,print_cost=False): """ 参数: X - 数据集,维度为(2,示例数) Y - 标签,维度为(1,示例数) n_h - 隐藏层的数量 num_iterations - 梯度下降循环中的迭代次数 print_cost - 如果为True,则每1000次迭代打印一次成本数值 返回: parameters - 模型学习的参数,它们可以用来进行预测。 """ np.random.seed(3) #指定随机种子 n_x = layer_sizes(X, Y)[0] n_y = layer_sizes(X, Y)[2] parameters = initialize_parameters(n_x,n_h,n_y) W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] for i in range(num_iterations): A2 , cache = forward_propagation(X,parameters) cost = compute_cost(A2,Y,parameters) grads = backward_propagation(parameters,cache,X,Y) parameters = update_parameters(parameters,grads,learning_rate = 0.5) if print_cost: if i%1000 == 0: print("第 ",i," 次循环,成本为:"+str(cost)) return parameters
测试nn_model():
#测试nn_model print("=========================测试nn_model=========================") X_assess, Y_assess = nn_model_test_case() parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"]))
测试结果如下:
=========================测试nn_model========================= W1 = [[-4.18494482 5.33220319] [-7.52989354 1.24306197] [-4.19295428 5.32631786] [ 7.52983748 -1.24309404]] b1 = [[ 2.32926815] [ 3.7945905 ] [ 2.33002544] [-3.79468791]] W2 = [[-6033.83672179 -6008.12981272 -6033.10095329 6008.06636901]] b2 = [[-52.66607704]]
参数更新完了我们就可以来进行预测了。
预测
构建predict()来使用模型进行预测, 使用向前传播来预测结果。
predictions =
def predict(parameters,X): """ 使用学习的参数,为X中的每个示例预测一个类 参数: parameters - 包含参数的字典类型的变量。 X - 输入数据(n_x,m) 返回 predictions - 我们模型预测的向量(红色:0 /蓝色:1) """ A2 , cache = forward_propagation(X,parameters) predictions = np.round(A2) return predictions
测试一下predict
#测试predict print("=========================测试predict=========================") parameters, X_assess = predict_test_case() predictions = predict(parameters, X_assess) print("预测的平均值 = " + str(np.mean(predictions)))
测试结果:
=========================测试predict========================= 预测的平均值 = 0.666666666667
现在我们把所有的东西基本都做完了,我们开始正式运行。
正式运行
parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True) #绘制边界 plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y) plt.title("Decision Boundary for hidden layer size " + str(4)) predictions = predict(parameters, X) print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')
运行结果:
第 0 次循环,成本为:0.6930480201239823 第 1000 次循环,成本为:0.28808329356901835 第 2000 次循环,成本为:0.25438549407324496 第 3000 次循环,成本为:0.23386415038952196 第 4000 次循环,成本为:0.22679248744854008 第 5000 次循环,成本为:0.22264427549299015 第 6000 次循环,成本为:0.21973140404281316 第 7000 次循环,成本为:0.21750365405131294 第 8000 次循环,成本为:0.21950396469467315 第 9000 次循环,成本为:0.2185709575018246 准确率: 90%
更改隐藏层节点数量
我们上面的实验把隐藏层定为4个节点,现在我们更改隐藏层里面的节点数量,看一看节点数量是否会对结果造成影响。
plt.figure(figsize=(16, 32)) hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] #隐藏层数量 for i, n_h in enumerate(hidden_layer_sizes): plt.subplot(5, 2, i + 1) plt.title('Hidden Layer of size %d' % n_h) parameters = nn_model(X, Y, n_h, num_iterations=5000) plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y) predictions = predict(parameters, X) accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) print ("隐藏层的节点数量: {} ,准确率: {} %".format(n_h, accuracy))
打印结果:
隐藏层的节点数量: 1 ,准确率: 67.5 % 隐藏层的节点数量: 2 ,准确率: 67.25 % 隐藏层的节点数量: 3 ,准确率: 90.75 % 隐藏层的节点数量: 4 ,准确率: 90.5 % 隐藏层的节点数量: 5 ,准确率: 91.25 % 隐藏层的节点数量: 20 ,准确率: 90.0 % 隐藏层的节点数量: 50 ,准确率: 90.75 %
较大的模型(具有更多隐藏单元)能够更好地适应训练集,直到最终的最大模型过度拟合数据。
最好的隐藏层大小似乎在n_h = 5附近。实际上,这里的值似乎很适合数据,而且不会引起过度拟合。
我们还将在后面学习有关正则化的知识,它允许我们使用非常大的模型(如n_h = 50),而不会出现太多过度拟合。
【可选】探索
- 当改变sigmoid激活或ReLU激活的tanh激活时会发生什么?
- 改变learning_rate的数值会发生什么
- 如果我们改变数据集呢?
# 数据集 noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets() datasets = {"noisy_circles": noisy_circles, "noisy_moons": noisy_moons, "blobs": blobs, "gaussian_quantiles": gaussian_quantiles} dataset = "noisy_moons" X, Y = datasets[dataset] X, Y = X.T, Y.reshape(1, Y.shape[0]) if dataset == "blobs": Y = Y % 2 plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral) #上一语句如出现问题请使用下面的语句: plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral)
完整代码
作业代码
# -*- coding: utf-8 -*- """ 本文博客地址:https://blog.csdn.net/u013733326/article/details/79702148 @author: Oscar """ import numpy as np import matplotlib.pyplot as plt from testCases import * import sklearn import sklearn.datasets import sklearn.linear_model from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets #%matplotlib inline #如果你使用用的是Jupyter Notebook的话请取消注释。 np.random.seed(1) #设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的。 X, Y = load_planar_dataset() #plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral) #绘制散点图 shape_X = X.shape shape_Y = Y.shape m = Y.shape[1] # 训练集里面的数量 print ("X的维度为: " + str(shape_X)) print ("Y的维度为: " + str(shape_Y)) print ("数据集里面的数据有:" + str(m) + " 个") def layer_sizes(X , Y): """ 参数: X - 输入数据集,维度为(输入的数量,训练/测试的数量) Y - 标签,维度为(输出的数量,训练/测试数量) 返回: n_x - 输入层的数量 n_h - 隐藏层的数量 n_y - 输出层的数量 """ n_x = X.shape[0] #输入层 n_h = 4 #,隐藏层,硬编码为4 n_y = Y.shape[0] #输出层 return (n_x,n_h,n_y) def initialize_parameters( n_x , n_h ,n_y): """ 参数: n_x - 输入节点的数量 n_h - 隐藏层节点的数量 n_y - 输出层节点的数量 返回: parameters - 包含参数的字典: W1 - 权重矩阵,维度为(n_h,n_x) b1 - 偏向量,维度为(n_h,1) W2 - 权重矩阵,维度为(n_y,n_h) b2 - 偏向量,维度为(n_y,1) """ np.random.seed(2) #指定一个随机种子,以便你的输出与我们的一样。 W1 = np.random.randn(n_h,n_x) * 0.01 b1 = np.zeros(shape=(n_h, 1)) W2 = np.random.randn(n_y,n_h) * 0.01 b2 = np.zeros(shape=(n_y, 1)) #使用断言确保我的数据格式是正确的 assert(W1.shape == ( n_h , n_x )) assert(b1.shape == ( n_h , 1 )) assert(W2.shape == ( n_y , n_h )) assert(b2.shape == ( n_y , 1 )) parameters = {"W1" : W1, "b1" : b1, "W2" : W2, "b2" : b2 } return parameters def forward_propagation( X , parameters ): """ 参数: X - 维度为(n_x,m)的输入数据。 parameters - 初始化函数(initialize_parameters)的输出 返回: A2 - 使用sigmoid()函数计算的第二次激活后的数值 cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量 """ W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] #前向传播计算A2 Z1 = np.dot(W1 , X) + b1 A1 = np.tanh(Z1) Z2 = np.dot(W2 , A1) + b2 A2 = sigmoid(Z2) #使用断言确保我的数据格式是正确的 assert(A2.shape == (1,X.shape[1])) cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2} return (A2, cache) def compute_cost(A2,Y,parameters): """ 计算方程(6)中给出的交叉熵成本, 参数: A2 - 使用sigmoid()函数计算的第二次激活后的数值 Y - "True"标签向量,维度为(1,数量) parameters - 一个包含W1,B1,W2和B2的字典类型的变量 返回: 成本 - 交叉熵成本给出方程(13) """ m = Y.shape[1] W1 = parameters["W1"] W2 = parameters["W2"] #计算成本 logprobs = logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2)) cost = - np.sum(logprobs) / m cost = float(np.squeeze(cost)) assert(isinstance(cost,float)) return cost def backward_propagation(parameters,cache,X,Y): """ 使用上述说明搭建反向传播函数。 参数: parameters - 包含我们的参数的一个字典类型的变量。 cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。 X - 输入数据,维度为(2,数量) Y - “True”标签,维度为(1,数量) 返回: grads - 包含W和b的导数一个字典类型的变量。 """ m = X.shape[1] W1 = parameters["W1"] W2 = parameters["W2"] A1 = cache["A1"] A2 = cache["A2"] dZ2= A2 - Y dW2 = (1 / m) * np.dot(dZ2, A1.T) db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True) dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2)) dW1 = (1 / m) * np.dot(dZ1, X.T) db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True) grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2 } return grads def update_parameters(parameters,grads,learning_rate=1.2): """ 使用上面给出的梯度下降更新规则更新参数 参数: parameters - 包含参数的字典类型的变量。 grads - 包含导数值的字典类型的变量。 learning_rate - 学习速率 返回: parameters - 包含更新参数的字典类型的变量。 """ W1,W2 = parameters["W1"],parameters["W2"] b1,b2 = parameters["b1"],parameters["b2"] dW1,dW2 = grads["dW1"],grads["dW2"] db1,db2 = grads["db1"],grads["db2"] W1 = W1 - learning_rate * dW1 b1 = b1 - learning_rate * db1 W2 = W2 - learning_rate * dW2 b2 = b2 - learning_rate * db2 parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters def nn_model(X,Y,n_h,num_iterations,print_cost=False): """ 参数: X - 数据集,维度为(2,示例数) Y - 标签,维度为(1,示例数) n_h - 隐藏层的数量 num_iterations - 梯度下降循环中的迭代次数 print_cost - 如果为True,则每1000次迭代打印一次成本数值 返回: parameters - 模型学习的参数,它们可以用来进行预测。 """ np.random.seed(3) #指定随机种子 n_x = layer_sizes(X, Y)[0] n_y = layer_sizes(X, Y)[2] parameters = initialize_parameters(n_x,n_h,n_y) W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] for i in range(num_iterations): A2 , cache = forward_propagation(X,parameters) cost = compute_cost(A2,Y,parameters) grads = backward_propagation(parameters,cache,X,Y) parameters = update_parameters(parameters,grads,learning_rate = 0.5) if print_cost: if i%1000 == 0: print("第 ",i," 次循环,成本为:"+str(cost)) return parameters def predict(parameters,X): """ 使用学习的参数,为X中的每个示例预测一个类 参数: parameters - 包含参数的字典类型的变量。 X - 输入数据(n_x,m) 返回 predictions - 我们模型预测的向量(红色:0 /蓝色:1) """ A2 , cache = forward_propagation(X,parameters) predictions = np.round(A2) return predictions parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True) #绘制边界 plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y) plt.title("Decision Boundary for hidden layer size " + str(4)) predictions = predict(parameters, X) print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%') """ plt.figure(figsize=(16, 32)) hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] #隐藏层数量 for i, n_h in enumerate(hidden_layer_sizes): plt.subplot(5, 2, i + 1) plt.title('Hidden Layer of size %d' % n_h) parameters = nn_model(X, Y, n_h, num_iterations=5000) plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y) predictions = predict(parameters, X) accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) print ("隐藏层的节点数量: {} ,准确率: {} %".format(n_h, accuracy)) """
testCases.py
#-*- coding: UTF-8 -*- """ # WANGZHE12 """ import numpy as np def layer_sizes_test_case(): np.random.seed(1) X_assess = np.random.randn(5, 3) Y_assess = np.random.randn(2, 3) return X_assess, Y_assess def initialize_parameters_test_case(): n_x, n_h, n_y = 2, 4, 1 return n_x, n_h, n_y def forward_propagation_test_case(): np.random.seed(1) X_assess = np.random.randn(2, 3) parameters = {'W1': np.array([[-0.00416758, -0.00056267], [-0.02136196, 0.01640271], [-0.01793436, -0.00841747], [ 0.00502881, -0.01245288]]), 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]), 'b1': np.array([[ 0.], [ 0.], [ 0.], [ 0.]]), 'b2': np.array([[ 0.]])} return X_assess, parameters def compute_cost_test_case(): np.random.seed(1) Y_assess = np.random.randn(1, 3) parameters = {'W1': np.array([[-0.00416758, -0.00056267], [-0.02136196, 0.01640271], [-0.01793436, -0.00841747], [ 0.00502881, -0.01245288]]), 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]), 'b1': np.array([[ 0.], [ 0.], [ 0.], [ 0.]]), 'b2': np.array([[ 0.]])} a2 = (np.array([[ 0.5002307 , 0.49985831, 0.50023963]])) return a2, Y_assess, parameters def backward_propagation_test_case(): np.random.seed(1) X_assess = np.random.randn(2, 3) Y_assess = np.random.randn(1, 3) parameters = {'W1': np.array([[-0.00416758, -0.00056267], [-0.02136196, 0.01640271], [-0.01793436, -0.00841747], [ 0.00502881, -0.01245288]]), 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]), 'b1': np.array([[ 0.], [ 0.], [ 0.], [ 0.]]), 'b2': np.array([[ 0.]])} cache = {'A1': np.array([[-0.00616578, 0.0020626 , 0.00349619], [-0.05225116, 0.02725659, -0.02646251], [-0.02009721, 0.0036869 , 0.02883756], [ 0.02152675, -0.01385234, 0.02599885]]), 'A2': np.array([[ 0.5002307 , 0.49985831, 0.50023963]]), 'Z1': np.array([[-0.00616586, 0.0020626 , 0.0034962 ], [-0.05229879, 0.02726335, -0.02646869], [-0.02009991, 0.00368692, 0.02884556], [ 0.02153007, -0.01385322, 0.02600471]]), 'Z2': np.array([[ 0.00092281, -0.00056678, 0.00095853]])} return parameters, cache, X_assess, Y_assess def update_parameters_test_case(): parameters = {'W1': np.array([[-0.00615039, 0.0169021 ], [-0.02311792, 0.03137121], [-0.0169217 , -0.01752545], [ 0.00935436, -0.05018221]]), 'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]), 'b1': np.array([[ -8.97523455e-07], [ 8.15562092e-06], [ 6.04810633e-07], [ -2.54560700e-06]]), 'b2': np.array([[ 9.14954378e-05]])} grads = {'dW1': np.array([[ 0.00023322, -0.00205423], [ 0.00082222, -0.00700776], [-0.00031831, 0.0028636 ], [-0.00092857, 0.00809933]]), 'dW2': np.array([[ -1.75740039e-05, 3.70231337e-03, -1.25683095e-03, -2.55715317e-03]]), 'db1': np.array([[ 1.05570087e-07], [ -3.81814487e-06], [ -1.90155145e-07], [ 5.46467802e-07]]), 'db2': np.array([[ -1.08923140e-05]])} return parameters, grads def nn_model_test_case(): np.random.seed(1) X_assess = np.random.randn(2, 3) Y_assess = np.random.randn(1, 3) return X_assess, Y_assess def predict_test_case(): np.random.seed(1) X_assess = np.random.randn(2, 3) parameters = {'W1': np.array([[-0.00615039, 0.0169021 ], [-0.02311792, 0.03137121], [-0.0169217 , -0.01752545], [ 0.00935436, -0.05018221]]), 'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]), 'b1': np.array([[ -8.97523455e-07], [ 8.15562092e-06], [ 6.04810633e-07], [ -2.54560700e-06]]), 'b2': np.array([[ 9.14954378e-05]])} return parameters, X_assess
planar_utils.py
import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral) def sigmoid(x): s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(N*j,N*(j+1)) t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius X[ix] = np.c_[r*np.sin(t), r*np.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY