伯努利分布及衍生分布、随机游走
伯努利实验
伯努利实验概念及性质
定义:事件域为:\(\mathcal F = \{ \varnothing ,A,\bar A,\Omega \}\),只两种可能结果的试验称为伯努利实验。
现考虑重复n次独立试验的伯努利实验(这里每个\(A\)概率不变),这种实验称之为n重伯努利实验,记为\(E^n\)。
其样本点形如:
其中每个都有两种可能取值。易得样本点一共有\(2^n\)。概率空间易得不再赘述。
伯努利分布
伯努利分布(Bernoulli Distribution)是一种离散型概率分布,它用于描述只有两种结果(例如成功和失败)的随机试验。伯努利分布可以用一个参数\(p\)来描述成功的概率。概率分布可简单表示为:
其中k仅有0,1两个取值。这样写概率的好处在于:可以用于最大似然估计中的求导。
伯努利分布的期望和方差分别为:
伯努利分布通常用于二元分类问题中,例如预测一个事件是否发生、一次抛硬币的结果等。
二项分布
如果有多次独立的伯努利试验,可以使用二项分布(Binomial Distribution)来描述(简记为B)。
若记\(B_k\)为n重伯努利实验中事件\(A\)正好出现\(k\)次。则:
二项分布的重要性质
- 概率函数的形状:二项分布的概率函数呈现出类似钟形曲线的形状,当\(p=0.5\)时,概率函数的峰值达到最高。
- 期望和方差:二项分布的期望和方差分别为\(E(X)=np\)和\(Var(X)=np(1-p)\)
由于每次试验独立,期望与方差可以简易地由伯努利分布的期望与方差推出。
若要依据其概率分布来推,则二项分布期望推导如下:
而
上式右边部分是\(n-1\)次实验抽到\(k-1\)个的概率对k求和,从而为1。
二项分布的方差推导如下:
与上面求期望的同理,把\(k(k-1)\)乘进\(C\)的表达式即可。这个构造我认为非常有用,这样的话即便是\(E(X^3)\),也可以拆成\(k(k-1)(k-2)+ak(k-1)+bk\)的形式进一步求解。回到原话题,由上易得
从而最终得到\(Var(X)= np(1-p)\)
-
大数定律:二项分布具有大数定律,即当试验次数\(n\)趋近于无穷大时,二项分布的概率函数逐渐趋近于正态分布
-
中心极限定理:二项分布满足中心极限定理,即当试验次数\(n\)足够大时,二项分布可以近似看作正态分布
几何分布
现在讨论在伯努利实验中手册成功出现在第k次实验的概率。记第k次实验出现\(A\)的事件为\(W_k\),有:
几何分布性质
- 无记忆性:几何分布具有无记忆性,即在已知前\(k\)次试验失败的情况下,下一次试验仍然是独立的伯努利试验,成功的概率仍然是\(p\)
- 概率函数的形状:几何分布的概率函数呈现出右偏斜的单峰形状,随着等待次数\(k\)的增加,概率逐渐减小
- 期望和方差:几何分布的期望为\(E(X)=\frac{1}{p}\),方差为\(Var(X)=\frac{1-p}{p^2}\)
期望可由高中数列错位相减法处理,是比较易得的。方差稍微有些变化:
接下来的部分就不写了,总之容易得到\(Var(X)\)。
帕斯卡分布
让我们以\(C_k\)表示第r次成功发生在第k次实验这一事件。
这个概率分布被称之为帕斯卡分布。
典中典的就是分赌注问题。
帕斯卡分布与分赌注问题(Gambler's Ruin Problem)有着密切的联系。分赌注问题的确是一个比较正统的概率论问题,它也被看做是概率论诞生的事件。问题描述很简单,说甲乙两人下赌注,然后反复进行双人赌局,约定谁先赢\(𝑡\)局者获胜。显然,有限赌局后一定可以分出胜负,有趣的问题是:赌局在甲胜\(r\)局、乙胜\(s\)局后被迫中止,那赌注该如何分配?一种最简单粗暴的方法就是按照\(r:s\)的比例关系分配,这种方法只是符合了含糊的直觉,完全经不起推敲。
但用帕斯卡分布的模型来看,就经得起推敲了。可从3个角度确定甲赢的概率:
(1)根据乙赢的次数或总次数;(2)根据乙赢时甲赢的次数;(3)接下来的\(m+n−1\)局里甲胜的局数。它们其实是相等的。依照概率分赌注,就会显得相当合理了。
随机游走
随机游走(Random Walk)是指在规定的状态空间中,按照一定的概率分布,随机地向某个方向前进的过程。随机游走可以在一维、二维或更高维的状态空间中进行。
在随机游走中,每一步的移动通常是独立的,且每一步的概率分布只依赖于当前的状态,与之前的状态或历史无关。在一维随机游走中,例如,每一步可以向左或向右移动一个单位距离,且向左或向右的概率相等,即\(p=0.5\)。在二维随机游走中,每一步可以向上、向下、向左或向右移动一个单位距离,且四个方向的概率相等,即\(p=0.25\)。
若质点可以在整个数轴的整数点上游动,则称这种随机游走为无限制随机游走。若在某点有个吸收壁,质点到这就不再动了,则称之为有吸收壁的随机游走。
无限制随机游走
《随机过程》教科书给出了一维简单随机游走随机变量的数学模型
易得\(E(S)=0,Var(S)=n\)
表明一维简单随机游走\(S_n\)的方差与步数\(n\)成正比,因此,一维简单随机游走是一个类似于物理学布朗运动的扩散过程。
方差是用来刻画随机变量偏离均值分散程度的数字特征,度量的是所有样本轨道(小球或醉汉)偏离均值的发散程度,因此,方差表明:随着步数n的增加,大量一维简单随机游走的小球会远离原点。
n次移动移动到k(k可以为负整数)的概率为:
其中p为向上移动的概率,\(p+q=1\)(注意n、k必须同奇偶)。
来一些问题:
- 无限制随机游走的期望距离:
待补充:似乎是没有比较简洁的答案
- 无限制随机游走回到原点的期望步数:
待补充:似乎是没有比较简洁的答案 - 一开始在数轴0位置,有P概率往右走,Q概率往左走,问第一次到达位置n的期望步数
二维推广:
- 首先是无限制随机游走的期望距离
待补充:似乎是没有比较简洁的答案
有吸收壁的随机游走
经典面试概率题
假定质点在0时刻位于\(a\),在\(x=0\),\(x=a+b\)处各有一个吸收壁,我们来求在两个吸收壁被吸收的概率,用的是差分方程法。
若以\(q_n\)记质点初始位置为n而最终在\(a+b\)点被吸收的概率,我们易得:
若某时刻质点位于\(x=n\),想要让他被\(x=a+b\)处吸收,有两种实现方法:要么接下去一次向\(a+b\)处移动,然后再移动被吸收;要么接下来一次向0移动,然后再移动被吸收。据此我们可列出:
令\(q_{n+1}-q_n=c_n\),可写作:
当\(q=p\)时,q成等差数列,易得\(q_n = \frac{n}{a+b}\)。
当\(q!=p\)时,可解得\(q_n = \frac{1-r^n}{1-r^{a+b}}\),其中\(r=\frac{q}{p}\)
同样的思路——状态n的概率与状态n-1/n+1的概率有关——还可以用到许多问题的求解上