摘要:
机器学习中使用正则化来防止过拟合是什么原理? 什么是过拟合?在训练集上拟合非常好,在测试集上泛化非常差。另一种说法是, 当我们提高在训练数据上的表现时,在测试数据上反而下降。 过拟合现象有多种解释: 经典的是bias-variance decomposition ,但个人认为这种解释更加倾向于直观理 阅读全文
摘要:
机器学习中使用正则化来防止过拟合是什么原理? 什么是过拟合?在训练集上拟合非常好,在测试集上泛化非常差。另一种说法是, 当我们提高在训练数据上的表现时,在测试数据上反而下降。 过拟合现象有多种解释: 经典的是bias-variance decomposition ,但个人认为这种解释更加倾向于直观理 阅读全文
|