通常,在分析算法的计算复杂性时,都将加法和乘法运算当作基本运算来处理,即将执行一次加法或乘法运算所需的计算时间,当作一个仅取决于计算机硬件 处理速度的常数。这个假定仅在参加运算的整数能在计算机硬件对整数的表示范围内直接处理才是合理的。然而,在某些情况下,要处理很大的整数,它无法在计算 机硬件能直接表示的整数范围内进行处理。若用浮点数来表示它,则只能近似的表示它的大小,计算结果中的有效数字也受到限制。若要精确地表示大整数并在计算 结果中要求精确地得到所有位数上的数字,就必须用软件的方法来实现大整数的算术运算。
      设X和Y都是n位的二进制整数,现在要计算它们的乘积Z。可以用小学所学的方法来设计计算乘积XY的算法,但是这样做计算步骤太多,效率较低。如果将每2 个1位数的乘法或加法看作一步运算,那么这种方法要进行O(n^2)步运算才能算出乘积XY。下面用分治法来设计更有效额大整数乘积算法。

      将n位二进制数X和Y都分为两段,每段长n/2位(为简单起见,假设n是2的幂)。则有:

                    

      其中X1、Xo分别为X的高位和低位,Y1、Yo分别为Y的高位和低位。C2是它们的前半部分的积;Co是它们后半部分的积;C1是X、Y两部分的和的积 减去C2与C0的积。如果n/2也是偶数,我们可以利用相同的方法来计算C2、Co的和C1。因此我们就得到了一个计算n位数积的递归算法:

                      

      在这种完美的形式下,当n变成1时,递归就停止了.或者当我们认为n已经够小了,小到可以直接对这样大小的数相乘时,递归就可以停止了.

      该算法会有多少次位乘呢?因为n位数的乘法需要对n/2位数做三次乘法运算,乘法次数M(n)的递推式将会是:     

    当n>1时,M(n)=3M(n/2),M(1)=1      

   当n=2^k时,我们可以用反向替换法对它求解:

                

演示:

  设X和Y都是n位的二进制整数,现在要计算它们的乘积XY。我们可以用小学所学的方法来设计一个计算乘积XY的算法,但是这样做计算步骤太多,显得效率较低。如果将每2个1位数的乘法或加法看作一步运算,那么这种方法要作O(n2)步运算才能求出乘积XY。下面我们用分治法来设计一个更有效的大整数乘积算法。

 

图6-3 大整数X和Y的分段 

我们将n位的二进制整数X和Y各分为2段,每段的长为n/2位(为简单起见,假设n是2的幂),如图6-3所示。

由此,X=A2n/2+B ,Y=C2n/2+D。这样,X和Y的乘积为:

XY=(A2n/2+B)(C2n/2+D)=AC2n+(AD+CB)2n/2+BD             (1)

如果按式(1)计算XY,则我们必须进行4次n/2位整数的乘法(AC,AD,BC和BD), 以及3次不超过n位的整数加法(分别对应于式(1)中的加号),此外还要做2次移位(分别对应于式(1)中乘2n和乘2n/2)。所有这些加法和移位共用O(n)步运算。设T(n)是2个n位整数相乘所需的运算总数,则由式(1),我们有:

                             (2)

由此可得T(n)=O(n2)。因此,用(1)式来计算X和Y的乘积并不比小学生的方法更有效。要想改进算法的计算复杂性,必须减少乘法次数。为此我们把XY写成另一种形式:

XY=AC2n+[(A-B)(D-C)+AC+BD]2n/2+BD                     (3)

虽然,式(3)看起来比式(1)复杂些,但它仅需做3次n/2位整数的乘法(AC,BD和(A-B)(D-C)),6次加、减法和2次移位。由此可得:

                                 (4)

用解递归方程的套用公式法马上可得其解为T(n)=O(nlog3)=O(n1.59)。利用式(3),并考虑到X和Y的符号对结果的影响,我们给出大整数相乘的完整算法MULT如下:

function MULT(X,Y,n); {X和Y为2个小于2n的整数,返回结果为X和Y的乘积XY} begin   S:=SIGN(X)*SIGN(Y); {S为X和Y的符号乘积}   X:=ABS(X);   Y:=ABS(Y); {X和Y分别取绝对值}   if n=1 then      if (X=1)and(Y=1) then return(S)                       else return(0)          else begin                 A:=X的左边n/2位;                 B:=X的右边n/2位;                 C:=Y的左边n/2位;                 D:=Y的右边n/2位;                 ml:=MULT(A,C,n/2);                 m2:=MULT(A-B,D-C,n/2);                 m3:=MULT(B,D,n/2);                 S:=S*(m1*2n+(m1+m2+m3)*2n/2+m3);                 return(S);               end; end;
 

上述二进制大整数乘法同样可应用于十进制大整数的乘法以提高乘法的效率减少乘法次数。下面的例子演示了算法的计算过程。

设X=314l,Y=5327,用上述算法计算XY的计算过程可列表如下,其中带'号的数值是在计算完成AC,BD,和(A-B)(D-C)之后才填入的。


X=3141        A=31       B=41        A-B=-10

Y=5327        C=53       D=27        D-C=-26

           AC=(1643)'

           BD=(1107)'

          (A-B)(D-C)=(260)'

XY=(1643)'104+[(1643)'+(260)'+(1107)']102+(1107)'

  =(16732107)'


A=31        A1=3       B1=1        A1-B1=2

C=53        C1=5       D1=3        D1-C1=-2

           A1C1=15     B1D1=3     (A1-B1)(D1-C1)=-4

AC=1500+(15+3-4)10+3=1643


B=41        A2=4       B2=1        A2-B2=3

D=27        C2=2       D2=7        D2-C2=5

           A2C2=8     B2D2=7     (A2-B2)(D2-C2)=15

BD=800+(8+7+15)10+7=1107


|A-B|=10        A3=1       B3=0        A3-B3=1

|D-C|=26        C3=2       D3=6        D3-C3=4

           A3C3=2     B3D3=0     (A3-B3)(D3-C3)=4

(A-B)(D-C)=200+(2+0+4)10+0=260


如果将一个大整数分成3段或4段做乘法,计算复杂性会发生会么变化呢?是否优于分成2段做的乘法?这个问题请大家自己考虑。

          

 
posted on 2012-10-03 13:53  red_rose  阅读(2323)  评论(0编辑  收藏  举报