1)贴上视频学习笔记,要求真实,不要抄袭,可以手写拍照。

A 概率论和贝叶斯

 

 

B矩阵和线性代数

 

 

 

 

 

2)用自己的话总结“梯度”,“梯度下降”和“贝叶斯定理”,可以word编辑,可做思维导图,可以手写拍照,要求言简意赅、排版整洁。

 梯度

梯度概念是建立在偏导数与方向导数概念基础上的。所谓偏导数,简单来说是对于一个多元函数,选定一个自变量并让其他自变量保持不变,只考察因变量与选定自变量的变化关系。数学上说,是指对于多元函数y=f(x1,x2,...xn)y=f(x_1,x_2,...x_n)y=f(x1,x2,...xn),假设其偏导数都存在,则该函数共有nnn个偏导数,可以表示为:

梯度下降

梯度下降的基本过程就和下山的场景很类似。首先,我们有一个可微分的函数。这个函数就代表着一座山。我们的目标就是找到这个函数的最小值,也就是山底。根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!因为梯度的方向就是函数之变化最快的方向。

贝叶斯公式:

简单讲就是说,当你不能准确知悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的多少去判断其本质属性的概率。用数学语言表达就是:支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。