1. 文法 G(S):
(1)S -> AB
(2)A ->Da|ε
(3)B -> cC
(4)C -> aADC |ε
(5)D -> b|ε
验证文法 G(S)是不是 LL(1)文法?
SELECT( A -> Da) = FIRST(Da) = { b, a }
SELECT( A -> ε) = FOLLOW( A) = { c, b, a, # }
SELECT( C -> aADC) = FIRST( aADC) = { a }
SELECT( C -> ε) = FOLLOW(C) = { # }
SELECT( D -> b) = FIRST(b) = { b }
SELECT( D -> ε ) =FOLLOW(D) = { a, # }
因为
SELECT( A -> Da) ∩ SELECT( A -> ε) = { a } ≠ ∅
所以,文法G(S)不是 LL(1)文法
2.(上次作业)消除左递归之后的表达式文法是否是LL(1)文法?
SELECT(E' -> +TE') = { + }
SELECT(E' -> ɛ) = { ) , # }
SELECT(T' -> *FT' ) ={ * }
SELECT(T' -> ɛ) = { + , ) , # }
SELECT(F -> (E) ) = { ( }
SELECT(F -> i ) = { i }
因为
SELECT(E' -> +TE') ∩ SELECT(E' -> ɛ) = ∅
SELECT(T' -> *FT' ) ∩ SELECT(T' -> ɛ) = ∅
SELECT(F -> (E) ) ∩ SELECT(F -> i ) = ∅
所以 消除左递归后的文法是 LL(1)文法
3.接2,如果是LL(1)文法,写出它的递归下降语法分析程序代码。
void ParseE(){
if(lookahead==’(’ || lookahead==’i’){
ParseT();
ParseE’();
}else{
printf(“syntax error \n”);
exit(0);
}
}
void ParseE’(){
switch(lookahead){
case ’+’:
MatchToken(’+’);
ParseT();
ParseE’();
break;
case ’)’,’#’:
break;
default:
printf(“syntax error \n”);
exit(0);
}
}
void ParseT(){
if(lookahead==’(’ || lookahead==’i’ ){
ParseF();
ParseT’();
} else{
printf(“syntax error \n”);
exit(0);
}
}
void ParseT’(){
switch(lookahead){
case ’*’:
MatchToken(’*’);
ParseF();
ParseT’();
break;
case ’+’,’)’,’#’:
break;
default:
printf(“syntax error \n”);
exit(0);
}
}
void ParseF(){
switch(lookahead){
case ’(’:
MatchToken( ’(’);
ParseE();
MatchToken(’)’ );
break;
case ’i’:
MatchToken(’i’);
break;
default:
printf(“syntax error \n”);
exit(0);
}
}