cartographer-sensor-internal-ordered_muti_queue
ordered_multi_queue.cc
OrderedMultiQueue主要函数为;
类中定义一个queues_,包含很多个带有key的Queue,每个Queue负责一种传感器数据收集和处理。
void OrderedMultiQueue::Add(const QueueKey& queue_key, std::unique_ptr data);
如果了解ROS ,会经常用到call_back,怎样实现的内,本类即可说明。
using Callback = std::function<void(std::unique_ptr<Data>)>;//回调函数
/*
struct QueueKey{
int trajectory_id; // 轨线id;
std::string sensor_id; //传感器id;
}
struct Queue {
common::BlockingQueue<std::unique_ptr<Data>> queue;
Callback callback;
bool finished = false;
};
std::map<int, common::Time> common_start_time_per_trajectory_;//轨迹id及对应创建轨迹时间
std::map<QueueKey, Queue> queues_;//多队列主体,本类最大的内存占用量: first 是QueueKey,second 是 Queue。
QueueKey blocker_;
*/
// Number of items that can be queued up before we log which queues are waiting
// for data.
const int kMaxQueueSize = 500;
} // namespace
// 重载QueueKey的<<输出运算符,友元函数
inline std::ostream& operator<<(std::ostream& out, const QueueKey& key) {
return out << '(' << key.trajectory_id << ", " << key.sensor_id << ')';
}
//添加一个关键词是key的队列,并用比较函数Callback排序
void OrderedMultiQueue::AddQueue(const QueueKey& queue_key, Callback callback) {
CHECK_EQ(queues_.count(queue_key), 0);
queues_[queue_key].callback = std::move(callback);
}
/*
某一key标识的【队列】Queue已经完成入队,因此不能再入队列,并在map中移除key.
*/
void OrderedMultiQueue::MarkQueueAsFinished(const QueueKey& queue_key) {
auto it = queues_.find(queue_key);
CHECK(it != queues_.end()) << "Did not find '" << queue_key << "'.";
auto& queue = it->second;
CHECK(!queue.finished);//检查状态
queue.finished = true;//标记本队列已完成,别的数据不能再入队.
Dispatch(); //调用一次MarkQueueAsFinished()就要调用一次Dispatch()
}
//根据key找到队列,并添加data元素
void OrderedMultiQueue::Add(const QueueKey& queue_key,
std::unique_ptr<Data> data) {
auto it = queues_.find(queue_key);
if (it == queues_.end()) {//没有key时,警告
LOG_EVERY_N(WARNING, 1000)
<< "Ignored data for queue: '" << queue_key << "'";
return;
}
it->second.queue.Push(std::move(data));
Dispatch();//调用一次Add()就要调用一次Dispatch()
}
//先找到没有finished的队列,然后再对这些队列标记finished.已完成的则不作任何处理
void OrderedMultiQueue::Flush() {
std::vector<QueueKey> unfinished_queues;
for (auto& entry : queues_) {
if (!entry.second.finished) {
unfinished_queues.push_back(entry.first);
}
}
for (auto& unfinished_queue : unfinished_queues) {
MarkQueueAsFinished(unfinished_queue);
}
}
QueueKey OrderedMultiQueue::GetBlocker() const {
CHECK(!queues_.empty());
return blocker_;
}
//处理最早的数据
void OrderedMultiQueue::Dispatch() {
while (true) {
//首先处理的数据,也即最早采集的数据
const Data* next_data = nullptr;
Queue* next_queue = nullptr;
QueueKey next_queue_key;
//遍历队列中的每一个key:填充上面3个变量值。如果某一key对应的data为空,则直接return
for (auto it = queues_.begin(); it != queues_.end();) { // 通过for循环,找到所有队列中最早的data,赋值给next_data
const auto* data = it->second.queue.Peek<Data>();//获取某一队的队首data
if (data == nullptr) {
if (it->second.finished) {//it对应的队列为空且为finished,故删除it对应的key
queues_.erase(it++);
continue;
}
CannotMakeProgress(it->first);//此时什么也不做
return;
}
//找到next_data数据: 即采集时间最早的数据,理论上应该最先处理它。 next_data改为 earlest_data更好理解
if (next_data == nullptr || data->GetTime() < next_data->GetTime()) {
next_data = data;
next_queue = &it->second;
next_queue_key = it->first;
}
CHECK_LE(last_dispatched_time_, next_data->GetTime())
<< "Non-sorted data added to queue: '" << it->first << "'";
++it;
}
if (next_data == nullptr) {
CHECK(queues_.empty());//只有多队列为空,才可能next_data==nullptr
return;
}
// If we haven't dispatched any data for this trajectory yet, fast forward
// all queues of this trajectory until a common start time has been reached.
const common::Time common_start_time = //common_start_time即所有的sensor都开始有data的时间点。
GetCommonStartTime(next_queue_key.trajectory_id);
if (next_data->GetTime() >= common_start_time) { //大多数情况,happy case
// Happy case, we are beyond the 'common_start_time' already.
last_dispatched_time_ = next_data->GetTime();//调用回调函数处理data。
next_queue->callback(next_queue->queue.Pop()); //处理并删除最新数据队列定端数据,也就是最新数据
} else if (next_queue->queue.Size() < 2) { // 罕见
if (!next_queue->finished) {
// We cannot decide whether to drop or dispatch this yet.
CannotMakeProgress(next_queue_key);
return;
}
last_dispatched_time_ = next_data->GetTime();
next_queue->callback(next_queue->queue.Pop());
} else {
// We take a peek at the time after next data. If it also is not beyond
// 'common_start_time' we drop 'next_data', otherwise we just found the
// first packet to dispatch from this queue.
std::unique_ptr<Data> next_data_owner = next_queue->queue.Pop();
if (next_queue->queue.Peek<Data>()->GetTime() > common_start_time) {
last_dispatched_time_ = next_data->GetTime();
next_queue->callback(std::move(next_data_owner));
}
}
}
}
//queue_key赋值给blocker_,表示
void OrderedMultiQueue::CannotMakeProgress(const QueueKey& queue_key) {
blocker_ = queue_key;//标识该队列Queue已经阻塞
for (auto& entry : queues_) {
if (entry.second.queue.Size() > kMaxQueueSize) {
LOG_EVERY_N(WARNING, 60) << "Queue waiting for data: " << queue_key;
return;
}
}
}
common::Time OrderedMultiQueue::GetCommonStartTime(const int trajectory_id) {
//map.emplace():Construct and insert element,根据trajectory_id构造一个map。
//std::map<int, common::Time> common_start_time_per_trajectory_;//轨迹id及对应创建轨迹时间
auto emplace_result = common_start_time_per_trajectory_.emplace(
trajectory_id, common::Time::min());
common::Time& common_start_time = emplace_result.first->second;//first是插入元素指针
if (emplace_result.second) {
for (auto& entry : queues_) {
//entry是map的pair<,>.本循环求得所有传感器中的maxtime
if (entry.first.trajectory_id == trajectory_id) {
common_start_time = std::max(
common_start_time, entry.second.queue.Peek<Data>()->GetTime());//peak 最先元素,也就是最早时间
}
}
LOG(INFO) << "All sensor data for trajectory " << trajectory_id
<< " is available starting at '" << common_start_time << "'.";
}
return common_start_time;
}