维护后面的position + 离线 + 线段树 bzoj 3585
3585: mex
Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 918 Solved: 481
[Submit][Status][Discuss]
Description
有一个长度为n的数组{a1,a2,...,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。
Input
第一行n,m。
第二行为n个数。
从第三行开始,每行一个询问l,r。
Output
一行一个数,表示每个询问的答案。
Sample Input
5 5
2 1 0 2 1
3 3
2 3
2 4
1 2
3 5
2 1 0 2 1
3 3
2 3
2 4
1 2
3 5
Sample Output
1
2
3
0
3
2
3
0
3
HINT
数据规模和约定
对于100%的数据:
1<=n,m<=200000
0<=ai<=109
1<=l<=r<=n
对于30%的数据:
1<=n,m<=1000
Source
http://www.lydsy.com/JudgeOnline/problem.php?id=3585
思路:
其实这题的思路和bzoj 3339完全就一样啊,连离散化都不需要。->我的bzoj3339:http://www.cnblogs.com/heimao5027/p/6668367.html
因为对于n个数字,他的mex一定是<=n的,所以就算a[i]=1e9,那么我们就不要放到mex函数里面就好了,然后直接令next[i]=n+1即可,并不需要离散化
于是就这么简单的修改一下3339的代码,一下子就又过了= =
//看看会不会爆int!数组会不会少了一维! //取物问题一定要小心先手胜利的条件 #include <bits/stdc++.h> using namespace std; #pragma comment(linker,"/STACK:102400000,102400000") #define LL long long #define ALL(a) a.begin(), a.end() #define pb push_back #define mk make_pair #define fi first #define se second #define haha printf("haha\n") const int maxn = 200000 + 5; vector<pair<int, int> > ve[maxn]; int tree[maxn << 2], lazy[maxn << 2]; int n, q; int a[maxn], mex[maxn]; bool vis[maxn]; int nxt[maxn], pos[maxn]; void build_tree(int l, int r, int o){ lazy[o] = -1; if (l == r){ tree[o] = mex[l]; return ; } int mid = (l + r) / 2; build_tree(l, mid, o << 1); build_tree(mid + 1, r, o << 1 | 1); tree[o] = min(tree[o << 1], tree[o << 1 | 1]); } void push_down(int o){ int lb = o << 1, rb = o << 1 | 1; if (lazy[lb] == -1 || lazy[lb] > lazy[o]){ lazy[lb] = lazy[o]; tree[lb] = min(tree[lb], lazy[lb]); } if (lazy[rb] == -1 || lazy[rb] > lazy[o]){ lazy[rb] = lazy[o]; tree[rb] = min(tree[rb], lazy[rb]); } tree[o] = -1; } int query(int x, int l, int r, int o){ if (x == l && x == r){ return tree[o]; } if (lazy[o] != -1) push_down(o); int mid = (l + r) / 2; if (x <= mid) return query(x, l, mid, o << 1); if (x > mid) return query(x, mid + 1, r, o << 1 | 1); } void update(int ql, int qr, int l, int r, int o, int val){ if (ql <= l && qr >= r){ if (lazy[o] == -1) lazy[o] = val; lazy[o] = min(lazy[o], val); tree[o] = min(lazy[o], tree[o]); return ; } if (lazy[o] != -1)push_down(o); int mid = (l + r) / 2; if (ql <= mid) update(ql, qr, l, mid, o << 1, val); if (qr > mid) update(ql, qr, mid + 1, r, o << 1 | 1, val); tree[o] = min(tree[o << 1], tree[o << 1 | 1]); } int ans[maxn]; void solve(){ build_tree(1, n, 1); for (int i = 1; i <= n; i++){ for (int j = 0; j < ve[i].size(); j++){ int pos = ve[i][j].fi, id = ve[i][j].se; ans[id] = query(pos, 1, n, 1); } int lb = i + 1, rb = nxt[i] - 1; if (lb <= rb) update(lb, rb, 1, n, 1, a[i]); } for (int i = 1; i <= q; i++){ printf("%d\n", ans[i]); } } int main(){ cin >> n >> q; for (int i = 1; i <= n; i++) { scanf("%d", a + i); if (a[i] <= n + 10) vis[a[i]] = true; mex[i] = mex[i - 1]; while (vis[mex[i]]) mex[i]++; pos[i] = n + 1; } for (int i = 0; i <= n; i++) pos[i] = n + 1; for (int i = n; i >= 1; i--){ if (a[i] >= n + 10){ nxt[i] = n + 1; continue; } nxt[i] = pos[a[i]]; pos[a[i]] = i; } for (int i = 1; i <= q; i++){ int l, r; scanf("%d%d", &l, &r); ve[l].pb(mk(r, i)); } solve(); return 0; }