线段树+dp+贪心 Codeforces Round #353 (Div. 2) E

http://codeforces.com/contest/675/problem/E

题目大意:有n个车站,每个车站只能买一张票,这张票能从i+1到a[i]。定义p[i][j]为从i到j所需要买的最小票数。问sigma(p)的和是多少。

 

思路:感觉我的dp定义能力还是太弱了啊,我刚开始还定义成dp[i]表示1~i-1到i所需要的最小花费和,后来发现这样子我转移不了啊!!

于是重新定义dp[i]表示从i出发到i+1~n所需要的最小票数,然后这样定义就能很好的解决问题啦。然后我们每次贪心的选取j = i+1~a[i]中的a[j]跑的最远的那个,然后进行转移就好了,具体的用线段树维护一下区间吧。

 

TAT感觉是不难的题目

复制代码
//看看会不会爆int!数组会不会少了一维!
//取物问题一定要小心先手胜利的条件
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define ALL(a) a.begin(), a.end()
#define pb push_back
#define mk make_pair
#define fi first
#define se second
#define haha printf("haha\n")
const int maxn = 1e5 + 5;
int a[maxn];
int n;
struct Tree{
    int lpos, rpos;
    Tree(int l = 0, int r = 0): lpos(l), rpos(r){}
}tree[maxn << 2];

inline void push_up(int o){
    int lb = o << 1, rb = o << 1 | 1;
    tree[o].rpos = max(tree[lb].rpos, tree[rb].rpos);
    if (tree[lb].rpos >= tree[rb].rpos) {
        tree[o].lpos = tree[lb].lpos;
    }
    else tree[o].lpos = tree[rb].lpos;
}

void build_tree(int l, int r, int o){
    if (l == r){
        tree[o].rpos = a[l];
        tree[o].lpos = l;
        return ;
    }
    int mid = (l + r) / 2;
    if (l <= mid) build_tree(l, mid, o << 1);
    if (r > mid) build_tree(mid + 1, r, o << 1 | 1);
    push_up(o);
}

Tree query(int l ,int r, int ql, int qr, int o){
    if (ql <= l && qr >= r){
        return tree[o];
    }
    Tree ans, re;
    ans.lpos = re.lpos = ans.rpos = re.rpos = 0;
    int mid = (l + r) / 2;
    if (ql <= mid)
        ans = query(l, mid, ql, qr, o << 1);
    if (qr > mid)
        re = query(mid + 1, r, ql, qr, o << 1 | 1);
    if (ans.rpos < re.rpos) ans = re;
    return ans;
}

LL dp[maxn];///定义从i开始走到n所需要的最小花费
int main(){
    scanf("%d", &n);
    a[n] = n;
    for (int i = 1; i <= n - 1; i++) scanf("%d", a + i);
    memset(tree, 0, sizeof(tree));
    build_tree(1, n, 1);
    LL ans = 0;
    for (int i = n - 1; i > 0; i--){
        Tree pos = query(1, n, i + 1, a[i], 1);
        dp[i] = n - i + dp[pos.lpos] - (a[i] - pos.lpos);
        ans += 1LL * dp[i];
    }
    printf("%lld\n", ans);
    return 0;
}
View Code
复制代码

 

posted @   知る奇迹に  阅读(150)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示