统计图像分割训练集中的类别分布


本系列文章由 @yhl_leo 出品,转载请注明出处。
文章链接: http://blog.csdn.net/yhl_leo/article/details/52225600


对于一个语义分割数据集,可以使用如下方法统计样本集ground truth的类别分布情况:

import cv2, os
import numpy as np

#amount of classer
CLASSES_NUM = 21

#find imagee in folder dir
def findImages(dir,topdown=True):
    im_list = []
    if not os.path.exists(dir):
        print "Path for {} not exist!".format(dir)
        raise
    else:
        for root, dirs, files in os.walk(dir, topdown):
            for fl in files:
                im_list.append(fl)
    return im_list

# amount of images corresponding to each classes
images_count = [0]*CLASSES_NUM
# amount of pixels corresponding to each class
class_pixels_count = [0]*CLASSES_NUM
# amount of pixels corresponding to the images of each class
image_pixels_count = [0]*CLASSES_NUM

image_folder = '../data/gt'
im_list = findImages(image_folder) 

for im in im_list:
    print im
    cv_img = cv2.imread(os.path.join(image_folder, im), cv2.IMREAD_UNCHANGED)
    size_img = cv_img.shape
    colors = set([])
    for i in range(size_img[0]):
        for j in range(size_img[1]):
            p_value = cv_img.item(i,j)
            if not p_value < CLASSES_NUM: # check
                print p_value
            else:
                class_pixels_count[p_value] = class_pixels_count[p_value] + 1
                colors.add(p_value)
    im_size = size_img[0]*size_img[1]
    for n in range(CLASSES_NUM):
        if n in colors:
            images_count[n] = images_count[n] + 1
            image_pixels_count[n] = image_pixels_count[n] + im_size

print images_count
print class_pixels_count
print image_pixels_count

上述代码,主要统计了每一类别所包含的图像数量(images_count),每一类别的像素数目(class_pixels_count)和每一类别对应的图像的总像素数目(image_pixels_count),有了这三组统计结果,就可以进一步计算训练时每一类别的lossclass_weight

posted on 2016-08-16 22:26  疯子123  阅读(339)  评论(0编辑  收藏  举报

导航