sparkstreaming消费receive
package two
/**
* Created by zhoucw on 上午2:11.
*/
import java.util.HashMap
import org.apache.kafka.clients.producer.{ProducerConfig, KafkaProducer, ProducerRecord}
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.SparkConf
/**
* Consumes messages from one or more topics in Kafka and does wordcount.
* Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>
* <zkQuorum> is a list of one or more zookeeper servers that make quorum
* <group> is the name of kafka consumer group
* <topics> is a list of one or more kafka topics to consume from
* <numThreads> is the number of threads the kafka consumer should use
*
* Example:
* `$ bin/run-example \
* org.apache.spark.examples.streaming.KafkaWordCount zoo01,zoo02,zoo03 \
* my-consumer-group topic1,topic2 1`
*/
object ReceiveKafkaWordCount {
def main(args: Array[String]) {
if (args.length < 4) {
System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>")
System.exit(1)
}
val Array(zkQuorum, group, topics, numThreads) = args
val sparkConf = new SparkConf().setAppName("KafkaWordCount").setMaster("local[4]")
val ssc = new StreamingContext(sparkConf, Seconds(2))
ssc.checkpoint("checkpoint")
val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1L))
.reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
// scalastyle:o