SimpleLinearRegression

import numpy as np
from .metrics import r2_score


class SimpleLinearRegression:

def __init__(self):
"""初始化Simple Linear Regression模型"""
self.a_ = None
self.b_ = None

def fit(self, x_train, y_train):
"""根据训练数据集x_train, y_train训练Simple Linear Regression模型"""
assert x_train.ndim == 1, \
"Simple Linear Regressor can only solve single feature training data."
assert len(x_train) == len(y_train), \
"the size of x_train must be equal to the size of y_train"

x_mean = np.mean(x_train)
y_mean = np.mean(y_train)

self.a_ = (x_train - x_mean).dot(y_train - y_mean) / (x_train - x_mean).dot(x_train - x_mean)
self.b_ = y_mean - self.a_ * x_mean

return self

def predict(self, x_predict):
"""给定待预测数据集x_predict,返回表示x_predict的结果向量"""
assert x_predict.ndim == 1, \
"Simple Linear Regressor can only solve single feature training data."
assert self.a_ is not None and self.b_ is not None, \
"must fit before predict!"

return np.array([self._predict(x) for x in x_predict])

def _predict(self, x_single):
"""给定单个待预测数据x,返回x的预测结果值"""
return self.a_ * x_single + self.b_

def score(self, x_test, y_test):
"""根据测试数据集 x_test 和 y_test 确定当前模型的准确度"""

y_predict = self.predict(x_test)
return r2_score(y_test, y_predict)

def __repr__(self):
return "SimpleLinearRegression()"
posted @ 2018-12-18 10:27  何国秀_xue  阅读(357)  评论(0编辑  收藏  举报