preprocessing

import numpy as np


class StandardScaler:

def __init__(self):
self.mean_ = None
self.scale_ = None

def fit(self, X):
"""根据训练数据集X获得数据的均值和方差"""
assert X.ndim == 2, "The dimension of X must be 2"

self.mean_ = np.array([np.mean(X[:,i]) for i in range(X.shape[1])])
self.scale_ = np.array([np.std(X[:,i]) for i in range(X.shape[1])])

return self

def transform(self, X):
"""将X根据这个StandardScaler进行均值方差归一化处理"""
assert X.ndim == 2, "The dimension of X must be 2"
assert self.mean_ is not None and self.scale_ is not None, \
"must fit before transform!"
assert X.shape[1] == len(self.mean_), \
"the feature number of X must be equal to mean_ and std_"

resX = np.empty(shape=X.shape, dtype=float)
for col in range(X.shape[1]):
resX[:,col] = (X[:,col] - self.mean_[col]) / self.scale_[col]
return resX
posted @ 2018-12-18 10:26  何国秀_xue  阅读(309)  评论(0编辑  收藏  举报