Laplace(拉普拉斯)先验与L1正则化
Laplace(拉普拉斯)先验与L1正则化
在之前的一篇博客中L1正则化及其推导推导证明了L1正则化是如何使参数稀疏化人,并且提到过L1正则化如果从贝叶斯的观点看来是Laplace先验,事实上如果从贝叶斯的观点,所有的正则化都是来自于对参数分布的先验。现在来看一下为什么Laplace先验会导出L1正则化,也顺便证明Gauss(高斯)先验会导出L2正则化。
最大似然估计
很多人对最大似然估计不明白,用最简单的线性回归的例子来说:如果有数据集\((X, Y)\),并且\(Y\)是有白噪声(就是与测量得到的\(Y\)与真实的\(Y_{real}\)有均值为零的高斯分布误差),目的是用新产生的\(X\)来得到\(Y\)。如果用线性模型来测量,那么有:
其中\(X=(x_1, x_2...x_n)\),\(\epsilon\)是白噪声,即\(\epsilon \sim N(0, \delta^2)\)。那么于一对数据集\((X_i, Y_i)\)来用,在这个模型中用\(X_i\)得到\(Y_i\)的概率是\(Y_i \sim N(f(X_i), \delta^2)\):
假设数据集中每一对数据都是独立的,那么对于数据集来说由\(X\)得到\(Y\)的概率是:
根据决策论,就可以知道可以使概率\(P(Y|X,\theta)\)最大的参数\(\theta^*\)就是最好的参数。那么我们可以直接得到最大似然估计的最直观理解:对于一个模型,调整参数\(\theta\),使得用X得到Y的概率最大。那么参数\(\theta\)就可以由下式得到:
这个就是最小二乘计算公式。
Laplace分布
Laplace概率密度函数分布为:
分布的图像如下所示:
可以看到Laplace分布集中在\(\mu\)附近,而且\(b\)越小,数据的分布就越集中。
Laplace先验导出L1正则化
先验的意思是对一种未知的东西的假设,比如说我们看到一个正方体的骰子,那么我们会假设他的各个面朝上的概率都是\(1/6\),这个就是先验。但事实上骰子的材质可能是密度不均的,所以还要从数据集中学习到更接近现实情况的概率。同样,在机器学习中,我们会根据一些已知的知识对参数的分布进行一定的假设,这个就是先验。有先验的好处就是可以在较小的数据集中有良好的泛化性能,当然这是在先验分布是接近真实分布的情况下得到的了,从信息论的角度看,向系统加入了正确先验这个信息,肯定会提高系统的性能。我们假设参数\(\theta\)是如下的Laplace分布的,这就是Laplace先验:
其中\(\lambda\)是控制参数\(\theta\)集中情况的超参数,\(\lambda\)越大那么参数的分布就越集中在0附近。
在前面所说的最大似然估计事实上是假设了\(\theta\)是均匀分布的,也就是\(P(\theta)=Constant\),我们最大化的要后验估计,即是:
如果是Laplace先验,将式\((3.1)\)代入到式\((3.2)\)中可得:
这就是由Laplace导出L1正则化,我在之前的一篇博客中L1正则化及其推导分析过\(\lambda\)越大,那么参数的分布就越集中在0附近,这个与Laplace先验的分析是一致的。
Gauss先验导出L2正则化
到这里,我们可以很轻易地导出L2正则化,假设参数\(\theta\)的分布是符合以下的高斯分布:
代入式\((3.2)\)可以直接得到L2正则化:
【防止爬虫转载而导致的格式问题——链接】:
http://www.cnblogs.com/heguanyou/p/7688344.html