求最大公约数
辗转相除法
例如,求(319,377):
∵ 319÷377=0(余319)
∴(319,377)=(377,319);
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29)
∴ (319,58)=(58,29);
∵ 58÷29=2(余0)
∴ (58,29)= 29;
∴ (319,377)=29。
可以写成右边的格式。
用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。
#include <stdio.h> int main() { int u=100; int v=10; while(v!=0){ int temp= u%10; u=v; v=temp; } printf("%d",u); return 0; }