深度学习85—[深度学习] 感知器

感知器

为了理解神经网络,我们应该先理解神经网络的组成单元——神经元。神经元也叫做感知器。感知器算法在上个世纪50-70年代很流行,也成功解决了很多问题。并且,感知器算法也是非常简单的。

感知器的定义

下图是一个感知器:

可以看到,一个感知器有如下组成部分:

  • 输入权值 一个感知器可以接收多个输入

     

    ,每个输入上有一个权值

     

    ,此外还有一个偏置项

     

    ,就是上图中的 w0

  • 激活函数 感知器的激活函数可以有很多选择,比如我们可以选择下面这个阶跃函数 f 来作为激活函数:

 

  • 输出 感知器的输出由下面这个公式来计算

 

 

如果看完上面的公式一下子就晕了,不要紧,我们用一个简单的例子来帮助理解。

例子:用感知器实现and函数

我们设计一个感知器,让它来实现and运算。程序员都知道,and是一个二元函数(带有两个参数 x1 和 x2),下面是它的真值表

 

为了计算方便,我们用0表示false,用1表示true。这没什么难理解的,对于C语言程序员来说,这是天经地义的。

我们令 ,而激活函数 f 就是前面写出来的阶跃函数,这时,感知器就相当于and函数。不明白?我们验算一下:

输入上面真值表的第一行,即 x1 = 0, x2 = 0,那么根据公式(1),计算输出: 

 

也就是当x1,x2都为0的时候,y为0,这就是真值表的第一行。读者可以自行验证上述真值表的第二、三、四行。

例子:用感知器实现or函数

同样,我们也可以用感知器来实现or运算。仅仅需要把偏置项的值设置为-0.3就可以了。我们验算一下,下面是or运算的真值表

我们来验算第二行,这时的输入是x1 = 0, x2 = 1,带入公式(1):

 

 

也就是当x1 = 0, x2 = 1时,y为1,即or真值表第二行。读者可以自行验证其它行。

感知器还能做什么

事实上,感知器不仅仅能实现简单的布尔运算。它可以拟合任何的线性函数,任何线性分类线性回归问题都可以用感知器来解决。前面的布尔运算可以看作是二分类问题,即给定一个输入,输出0(属于分类0)或1(属于分类1)。如下面所示,and运算是一个线性分类问题,即可以用一条直线把分类0(false,红叉表示)和分类1(true,绿点表示)分开。

然而,感知器却不能实现异或运算,如下图所示,异或运算不是线性的,你无法用一条直线把分类0和分类1分开。

感知器的训练

现在,你可能困惑前面的权重项和偏置项的值是如何获得的呢?这就要用到感知器训练算法:将权重项 wi 和偏置项 b 初始化为0,然后,利用下面的感知器规则迭代的修改,直到训练完成。

 

 

 

其中: 

 

 

wi 是与输入 xi 对应的权重项,b是偏置项。事实上,可以把看作是值永远为1的输入所对应的权重。是训练样本的实际值,一般称之为label。而是感知器的输出值,它是根据公式(1)计算得出。η 是一个称为学习速率的常数,其作用是控制每一步调整权的幅度。每次从训练数据中取出一个样本的输入向量,使用感知器计算其输出,再根据上面的规则来调整权重。每处理一个样本就调整一次权重。经过多轮迭代后(即全部的训练数据被反复处理多轮),就可以训练出感知器的权重,使之实现目标函数。

编程实战:实现感知器

完整代码请参考GitHub: https://github.com/hanbt/learn_dl/blob/master/perceptron.py (python2.7)

对于程序员来说,没有什么比亲自动手实现学得更快了,而且,很多时候一行代码抵得上千言万语。接下来我们就将实现一个感知器。

下面是一些说明:

  • 使用python语言。python在机器学习领域用的很广泛,而且,写python程序真的很轻松。
  • 面向对象编程。面向对象是特别好的管理复杂度的工具,应对复杂问题时,用面向对象设计方法很容易将复杂问题拆解为多个简单问题,从而解救我们的大脑。
  • 没有使用numpy。numpy实现了很多基础算法,对于实现机器学习算法来说是个必备的工具。但为了降低读者理解的难度,下面的代码只用到了基本的python(省去您去学习numpy的时间)。

下面是感知器类的实现,非常简单。去掉注释只有27行,而且还包括为了美观(每行不超过60个字符)而增加的很多换行。

 

class Perceptron(object):
    def __init__(self, input_num, activator):
        '''
        初始化感知器,设置输入参数的个数,以及激活函数。
        激活函数的类型为double -> double
        '''
        self.activator = activator
        # 权重向量初始化为0
        self.weights = [0.0 for _ in range(input_num)]
        # 偏置项初始化为0
        self.bias = 0.0
    def __str__(self):
        '''
        打印学习到的权重、偏置项
        '''
        return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)
    def predict(self, input_vec):
        '''
        输入向量,输出感知器的计算结果
        '''
        # 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起
        # 变成[(x1,w1),(x2,w2),(x3,w3),...]
        # 然后利用map函数计算[x1*w1, x2*w2, x3*w3]
        # 最后利用reduce求和
        return self.activator(
            reduce(lambda a, b: a + b,
                   map(lambda (x, w): x * w,  
                       zip(input_vec, self.weights))
                , 0.0) + self.bias)
    def train(self, input_vecs, labels, iteration, rate):
        '''
        输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
        '''
        for i in range(iteration):
            self._one_iteration(input_vecs, labels, rate)
    def _one_iteration(self, input_vecs, labels, rate):
        '''
        一次迭代,把所有的训练数据过一遍
        '''
        # 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
        # 而每个训练样本是(input_vec, label)
        samples = zip(input_vecs, labels)
        # 对每个样本,按照感知器规则更新权重
        for (input_vec, label) in samples:
            # 计算感知器在当前权重下的输出
            output = self.predict(input_vec)
            # 更新权重
            self._update_weights(input_vec, output, label, rate)
    def _update_weights(self, input_vec, output, label, rate):
        '''
        按照感知器规则更新权重
        '''
        # 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
        # 变成[(x1,w1),(x2,w2),(x3,w3),...]
        # 然后利用感知器规则更新权重
        delta = label - output
        self.weights = map(
            lambda (x, w): w + rate * delta * x,
            zip(input_vec, self.weights))
        # 更新bias
        self.bias += rate * delta

接下来,我们利用这个感知器类去实现and函数。



def
f(x): ''' 定义激活函数f ''' return 1 if x > 0 else 0 def get_training_dataset(): ''' 基于and真值表构建训练数据 ''' # 构建训练数据 # 输入向量列表 input_vecs = [[1,1], [0,0], [1,0], [0,1]] # 期望的输出列表,注意要与输入一一对应 # [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0 labels = [1, 0, 0, 0] return input_vecs, labels def train_and_perceptron(): ''' 使用and真值表训练感知器 ''' # 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f p = Perceptron(2, f) # 训练,迭代10轮, 学习速率为0.1 input_vecs, labels = get_training_dataset() p.train(input_vecs, labels, 10, 0.1) #返回训练好的感知器 return p if __name__ == '__main__': # 训练and感知器 and_perception = train_and_perceptron() # 打印训练获得的权重 print and_perception # 测试 print '1 and 1 = %d' % and_perception.predict([1, 1]) print '0 and 0 = %d' % and_perception.predict([0, 0]) print '1 and 0 = %d' % and_perception.predict([1, 0]) print '0 and 1 = %d' % and_perception.predict([0, 1])

 

将上述程序保存为perceptron.py文件,通过命令行执行这个程序,其运行结果为:

神奇吧!感知器竟然完全实现了and函数。读者可以尝试一下利用感知器实现其它函数。

参考链接:https://www.zybuluo.com/hanbingtao/note/433855

posted @ 2019-06-25 15:06  何弈  阅读(386)  评论(0编辑  收藏  举报
你好