FEM计算2D瞬态热传导方程

本文程序,使用有限元计算2D瞬态热传导方程。

本程序只使用2D三角形单元求解,没有四边形单元求解。不过,也非常容易就可做到。

主程序为:

Heat_Conduction_transient.m

大部分子程序和这篇文章相同,但是多了下面的初始温度场的子程序。

u_init.m

现将各个程序列于下:

%function Heat_Conduction_transient( )

%*****************************************************************************80
%
%% Applies the finite element method to the heat equation.
%
%    The user supplies datafiles that specify the geometry of the region 
%    and its arrangement into triangular elements, and the location and 
%    type of the boundary conditions, which can be any mixture of Neumann and 
%    Dirichlet, and the initial condition for the solution.
% 
%    Note that only uses triangular elements in this version.
%
%    The unknown state variable U(x,y,t) is assumed to satisfy
%    the time dependent heat equation:
%
%      dU(x,y,t)/dt = Uxx(x,y,t) + Uyy(x,y,t) + F(x,y,t) in Omega x [0,T]
%
%    with initial conditions
%
%      U(x,y,0) = U_INIT(x,y,0)
%
%    with Dirichlet boundary conditions
%
%      U(x,y,t) = U_D(x,y,t) on Gamma_D
%
%    and Neumann boundary conditions on the outward normal derivative:
%
%      Un(x,y) = G(x,y,t) on Gamma_N
%
%    If Gamma designates the boundary of the region Omega,
%    then we presume that
%
%      Gamma = Gamma_D + Gamma_N
%
%    but the user is free to determine which boundary conditions to
%    apply.  Note, however, that the problem will generally be singular
%    unless at least one Dirichlet boundary condition is specified.
%    
%    The code uses piecewise linear basis functions for triangular elements.
%    
%    The user is required to supply a number of data files and MATLAB
%    functions that specify the location of nodes, the grouping of nodes
%    into elements, the location and value of boundary conditions, and 
%    the right hand side function in the heat equation.  Note that the
%    fact that the geometry is completely up to the user means that
%    just about any two dimensional region can be handled, with arbitrary
%    shape, including holes and islands.
%    
%
%  Local Parameters:
%
%    Local, real DT, the size of a single time step.
%
%    Local, integer NT, the number of time steps to take.
%
%    Local, real T, the current time.
%
%    Local, real T_FINAL, the final time.
%
%    Local, real T_START, the initial time.
%

%  Read the nodal coordinate data file.
%
  load coordinates.dat;
%
%  Read the triangular element data file.
%
  load elements3.dat;
%
%  Read the Neumann boundary condition data file.
%  I THINK the purpose of the EVAL command is to create an empty NEUMANN array
%  if no Neumann file is found.
%
  eval ( 'load neumann.dat;', 'neumann=[];' );
%
%  Read the Dirichlet boundary condition data file.
%  There must be at least one Dirichlet boundary condition.
%
  load dirichlet.dat;
%
%  Determine the bound and free nodes.
%
  BoundNodes = unique ( dirichlet );
  FreeNodes = setdiff ( 1:size(coordinates,1), BoundNodes );

  A = sparse ( size(coordinates,1), size(coordinates,1) );
  B = sparse ( size(coordinates,1), size(coordinates,1) );

  t_start = 0.0;
  t_final = 1;
  nt = 10;% nt means number of time intervals instead of timesteps

  t = t_start;
  dt = ( t_final - t_start ) / nt;

  U = zeros ( size(coordinates,1), nt+1 );

%
%  Assembly.
%
  for j = 1 : size(elements3,1)
    A(elements3(j,:),elements3(j,:)) = A(elements3(j,:),elements3(j,:)) ...
      + stima3(coordinates(elements3(j,:),:));
  end

  for j = 1 : size(elements3,1)
    B(elements3(j,:),elements3(j,:)) = B(elements3(j,:),elements3(j,:)) ...
      + det ( [1,1,1; coordinates(elements3(j,:),:)' ] )...
      * [ 2, 1, 1; 1, 2, 1; 1, 1, 2 ] / 24;
  end
%
%  Set the initial condition.
%
  U(:,1) = u_init ( coordinates, t );
%
%  Given the solution at step I-1, compute the solution at step I.
%
  for i = 1 : nt

    t = ( ( nt - i ) * t_start   ...
        + (      i ) * t_final ) ...
        /   nt;

    b = sparse ( size(coordinates,1), 1 );

    u = sparse ( size(coordinates,1), 1 );
%
%  Account for the volume forces, evaluated at the new time T.
%
    for j = 1 : size(elements3,1)
      b(elements3(j,:)) = b(elements3(j,:)) ...
        + det( [1,1,1; coordinates(elements3(j,:),:)'] ) * ...
        dt * f ( sum(coordinates(elements3(j,:),:))/3, t ) / 6;
    end
%
%  Account for the Neumann conditions, evaluated at the new time T.
%
    for j = 1 : size(neumann,1)
      b(neumann(j,:)) = b(neumann(j,:)) + ...
        norm(coordinates(neumann(j,1),:) - coordinates(neumann(j,2),:)) * ...
        dt * g ( sum(coordinates(neumann(j,:),:))/2, t ) / 2;
    end
%
%  Account for terms that involve the solution at the previous timestep.
%
    b = b + B * U(:,i);
%
%  Use the Dirichlet conditions, evaluated at the new time T, to eliminate the
%  known state variables.
%
    u(BoundNodes) = u_d ( coordinates(BoundNodes,:), t );

    b = b - ( dt * A  + B ) * u;
%
%  Compute the remaining unknowns by solving ( dt * A + B ) * U = b.
%
    u(FreeNodes) = ( dt * A(FreeNodes,FreeNodes) + B(FreeNodes,FreeNodes) ) ...
      \ b(FreeNodes);

    U(:,i+1) = u;
  
  end

  show ( elements3, coordinates, U, t_start, t_final );

 

u_init.m

function value = u_init ( xy, t )

%*****************************************************************************80
%
%% U_INIT sets the initial condition for the state variable.
%
%  Discussion:
%
%    The user must supply the appropriate routine for a given problem
%
%    In many problems, the initial time is 0.  However, the value of
%    T is passed, in case the user wishes to use this same routine to
%    evaluate, for instance, the exact solution.
%
%
%  Parameters:
%
%    Input, real XY(N,M), contains the M-dimensional coordinates of N points.
%    N is probably the total number of points, and M is probably 2.
%
%    Input, real T, the initial time.  
%
%    Output, VALUE(N), contains the value of the solution U(X,Y,T).
%
  n = size ( xy, 1 );

  value = zeros ( n, 1 );
  middle = floor ( n / 2 );
  value ( middle ) = 1.0;

 

u_d.m

View Code
function value = u_d ( u, t )

%*****************************************************************************80
%
%% U_D evaluates the Dirichlet boundary conditions.
%
%  Discussion:
%
%    The user must supply the appropriate routine for a given problem
%
%
%  Parameters:
%
%    Input, real U(N,M), contains the M-dimensional coordinates of N points.
%
%    Output, VALUE(N), contains the value of the Dirichlet boundary
%    condition at each point.
%
  n = size ( u, 1 );

  value =zeros(n,1);% 0.1 * ( u(:,1) + u(:,2) );
value(1:13)=1;

 

stima3.m

View Code
function M = stima3 ( vertices )

%*****************************************************************************80
%
%% STIMA3 determines the local stiffness matrix for a triangular element.
%
%  Discussion:
%
%    Although this routine is intended for 2D usage, the same formulas
%    work for tetrahedral elements in 3D.  The spatial dimension intended
%    is determined implicitly, from the spatial dimension of the vertices.
%
%  Modified:
%
%    23 February 2004
%
%  Author:
%
%    Jochen Alberty, Carsten Carstensen, Stefan Funken.
%
%  Reference:
%
%    Jochen Alberty, Carsten Carstensen, Stefan Funken,
%    Remarks Around 50 Lines of MATLAB:
%    Short Finite Element Implementation,
%    Numerical Algorithms,
%    Volume 20, pages 117-137, 1999.
%
%  Parameters:
%
%    Input, real VERTICES(1:(D+1),1:D), contains the D-dimensional 
%    coordinates of the vertices.
%
%    Output, real M(1:(D+1),1:(D+1)), the local stiffness matrix 
%    for the element.
%
  d = size ( vertices, 2 );

  D_eta = [ ones(1,d+1); vertices' ] \ [ zeros(1,d); eye(d) ];

  M = det ( [ ones(1,d+1); vertices' ] ) * D_eta * D_eta' / prod ( 1:d );

  return
end

show.m

View Code
function show ( elements3, coordinates, U, t_start, t_final )

%*****************************************************************************80
%
%% SHOW displays the solution of the finite element computation.
%
%
%  Parameters:
%
%    Input, integer ELEMENTS3(N3,3), the nodes that make up each triangle.
%
%    Input, real COORDINATES(N,1:2), the coordinates of each node.
%
%    Input, real U(N,NT+1), the solution, for each time step.
%  
%    Input, integer NT, the number of time steps.
%
%    Input, real T_START, T_FINAL, the start and end times.
%
  umin = min ( min ( U ) );
  umax = max ( max ( U ) );
nt=size(U,2)-1;

  for i = 0 : nt
%
%  Print the current time T to the command window, and in the plot title.
%
    t = ( ( nt - i     ) * t_start   ...
        + (      i     ) * t_final ) ...
        /   nt;

    fprintf ( 1, 'T = %f\n', t );
%
    picture = trisurf ( elements3, coordinates(:,1), coordinates(:,2), ...
      U(:,i+1)', 'EdgeColor', 'interp', 'FaceColor', 'interp' );
%
%  We want all the plots to use the same Z scale.
%
    axis ( [0 1 0 1 umin umax] );
%
%  Write some labels on the plot.
%
    xlabel ( 'X axis' );
    ylabel ( 'Y axis' );
    s = sprintf ( 'T = %8f', t );
    title ( s );
%
    drawnow
end

f.m

View Code
function value = f ( xy, t )

%*****************************************************************************80
%
%% F evaluates the right hand side of the heat equation.
%
%
%    This routine must be changed by the user to reflect a particular problem.
%
%
%  Parameters:
%
%    Input, real XY(N,M), contains the M-dimensional coordinates of N points.
%
%    Output, VALUE(N), contains the value of the right hand side of Laplace's
%    equation at each of the points.
%
  n = size ( xy, 1 );

  value(1:n) = 0;

g.m

View Code
function value = g ( u, t )

%*****************************************************************************80
%
%% G evaluates the outward normal values assigned at Neumann boundary conditions.
%
%    This routine must be changed by the user to reflect a particular problem.
%
%    For this particular problem, we want to set the value of G(X,Y,T) to 1
%    if X is 1, and to 0 otherwise.
%
%  Parameters:
%
%    Input, real U(N,M), contains the M-dimensional coordinates of N points.
%
%    Input, real T, the current time.
%
%    Output, VALUE(N), contains the value of the outward normal at each point
%    where a Neumann boundary condition is applied.
%
  n = size ( u, 1 );

  value = zeros ( n, 1 );

coord3.m

View Code
% the coordinate index is from 1~Nx(from left to right) for the bottom line
% and then from Nx+1~2*Nx  (from left to right) for the next line above 
% and then next
xmin=0;xmax=1;
ymin=0;ymax=1;
Nx=13;Ny=13;
x=linspace(xmin,xmax,Nx);
y=linspace(ymin,ymax,Ny);

k=0;
for i1=1:Ny
    for i2=1:Nx
        k=k+1;
        Coord(k,:)=[x(i2),y(i1)];    
    end
end

save coordinates.dat Coord -ascii


% the element index
k=0;
vertices=zeros((Nx-1)*(Ny-1)*2,3);
for i1=1:Ny-1
    for i2=1:Nx-1
        k=k+1;
        ijm1=i2+(i1-1)*Nx;
        ijm2=i2+1+(i1-1)*Nx;
        ijm3=i2+1+i1*Nx;
        vertices(k,:)=[ijm1,ijm2,ijm3];
        
        k=k+1;
        ijm1=i2+1+i1*Nx;
        ijm2=i2+i1*Nx;
        ijm3=i2+(i1-1)*Nx;
        vertices(k,:)=[ijm1,ijm2,ijm3];
        
    end
end
save elements3.dat vertices -ascii

% The direchlet boundary condition (index of the two end nodes for each boundary line)
boundary=zeros(2*(Nx+Ny-2),2);
temp1=1:Nx-1;
temp2=2:Nx;
temp3=1:Nx-1;
boundary(temp3',:)=[temp1',temp2'];
temp1=Nx*(1:Ny-1);
temp2=temp1+Nx;
temp3=temp3+Nx-1;
boundary(temp3',:)=[temp1',temp2'];
temp1=Ny*Nx:-1:Ny*Nx-Nx+2;
temp2=temp1-1;
temp3=temp3+Nx-1;
boundary(temp3',:)=[temp1',temp2'];
temp1=Nx*(Ny-1)+1:-Nx:Nx+1;
temp2=temp1-Nx;
temp3=temp3+Nx-1;
boundary(temp3',:)=[temp1',temp2'];
save dirichlet.dat boundary -ascii

 

 

 

posted @ 2012-11-29 21:06  heaventian  阅读(2108)  评论(0编辑  收藏  举报