luogu2540 斗地主增强版
题目大意
给你一副手牌,没有飞机带翅膀,按斗地主的规则,求将所有牌打出的最少次数。
题解
先不考虑顺子
我们已经知道花色对牌没有影响,那么如果不考虑顺子,每个牌具体是什么数字我们也用不着知道,我们关心的只有牌堆中单张、对子、棒子、炸弹、王的个数。因此我们可以用$f(k_1,k_2,k_3,k_4,k_x)$表示当有$k_1$个单张,$k_2$个对子,$k_3$个棒,$k_4$个炸弹,$k_x$个王时,将牌全部打出的最少次数。而显然这是可以进行DP的。转移方式为:要么不拆牌而出牌,要么拆牌。
递推的顺序?
看以下拆牌的递推式:
if (k2)//将二拆成两个单张 UpdMin(cur, F[k1 + 2][k2 - 1][k3][k4][kx]); if (k3)//将三拆成一个单张和一对 UpdMin(cur, F[k1 + 1][k2 + 1][k3 - 1][k4][kx]); if (k4)//将四拆成一个单张和一棒 UpdMin(cur, F[k1 + 1][k2][k3 + 1][k4 - 1][kx]); if (k4)//将四拆成两对 UpdMin(cur, F[k1][k2 + 2][k3][k4 - 1][kx]);
我们从外到里考虑。最外层不可以从+1处转移,因此我们把$k_4$选为最外层。此时,从$k_4-1$处的转移就都合法了,我们看从$k_4$转移时,第二层不可以从+1处转移。故第二层选$k_3$。此时,从$k3-1$处的转移就都合法了。当从$k_3$处转移时,第三层不可以从+1处转移……因此,递推顺序为$k_4\rightarrow k_3\rightarrow k_2\rightarrow k_1\rightarrow k_x$。
考虑顺子呢?
枚举所有出顺子的方式(暴力搜顺子),然后再在剩余的牌中查DP表即可。
#include <cstdio> #include <cstring> #include <algorithm> #include <cassert> using namespace std; #define UpdMin(x, y) x = min(x, y) const int MAX_ID = 27, MAX_IDCNT = 7, INF = 0x3f3f3f3f; const int IdBegin = 1, IdShunziEnd = 12, IdLast = 13, MaxUnitLen = 3; const int UnitCnt[4] = { 0, 5, 3, 2 }; int F[MAX_ID][MAX_ID][MAX_ID][MAX_ID][MAX_ID]; int IdCnt[MAX_ID], IdCnt_Cnt[MAX_IDCNT]; int CardCnt, Ans; void DoShunzi(int shunziCnt, int idBegin, int unitLen, int unitCnt) { if (shunziCnt >= Ans) return; for (int dId = 0; dId < unitCnt; dId++) IdCnt[idBegin + dId] -= unitLen; memset(IdCnt_Cnt, 0, sizeof(IdCnt_Cnt)); for (int id = IdBegin; id <= IdLast; id++) IdCnt_Cnt[IdCnt[id]]++; IdCnt_Cnt[0] = IdCnt[0]; UpdMin(Ans, shunziCnt + F[IdCnt_Cnt[1]][IdCnt_Cnt[2]][IdCnt_Cnt[3]][IdCnt_Cnt[4]][IdCnt_Cnt[0]]); for (int unitLen1 = 1; unitLen1 <= IdLast; unitLen1++) for (int idBegin1 = IdBegin; idBegin1 <= IdShunziEnd; idBegin1++) for (int unitCnt1 = 1; idBegin1 + unitCnt1 - 1 <= IdShunziEnd && IdCnt[idBegin1 + unitCnt1 - 1] >= unitLen1; unitCnt1++) if (unitCnt1 >= UnitCnt[unitLen1]) DoShunzi(shunziCnt + 1, idBegin1, unitLen1, unitCnt1); for (int dId = 0; dId < unitCnt; dId++) IdCnt[idBegin + dId] += unitLen; } void DP() { memset(F, INF, sizeof(F)); F[0][0][0][0][0] = 0; for (int k4 = 0; k4 <= CardCnt / 4; k4++) for (int k3 = 0; k3 <= CardCnt / 3; k3++) for (int k2 = 0; k2 <= CardCnt / 2; k2++) for (int k1 = 0; k1 <= CardCnt; k1++) for (int kx = 0; kx <= 2; kx++) { int &cur = F[k1][k2][k3][k4][kx]; if (kx >= 2)//火箭 UpdMin(cur, F[k1][k2][k3][k4][kx - 2] + 1); if (k4)//炸弹 UpdMin(cur, F[k1][k2][k3][k4 - 1][kx] + 1); if (k1)//单张,不是王 UpdMin(cur, F[k1 - 1][k2][k3][k4][kx] + 1); if (kx)//单张 ,是王 UpdMin(cur, F[k1][k2][k3][k4][kx - 1] + 1); if (k2)//对子 UpdMin(cur, F[k1][k2 - 1][k3][k4][kx] + 1); if (k3)//三张 UpdMin(cur, F[k1][k2][k3 - 1][k4][kx] + 1); if (k3 && k1)//三带一,一不是王 UpdMin(cur, F[k1 - 1][k2][k3 - 1][k4][kx] + 1); if (k3 && kx)//三带一,一是王 UpdMin(cur, F[k1][k2][k3 - 1][k4][kx - 1] + 1); if (k3 && k2)//三带二,二都不是王 UpdMin(cur, F[k1][k2 - 1][k3 - 1][k4][kx] + 1); if (k4 && k1 >= 2)//四带二单,二都不是王 UpdMin(cur, F[k1 - 2][k2][k3][k4 - 1][kx] + 1); if (k4 && k1 && kx)//四带二单,二中一张不是王,一张是王 UpdMin(cur, F[k1 - 1][k2][k3][k4 - 1][kx - 1] + 1); if (k4 && k2 >= 2)//四带二对 UpdMin(cur, F[k1][k2 - 2][k3][k4 - 1][kx] + 1); if (k2)//将二拆成两个单张 UpdMin(cur, F[k1 + 2][k2 - 1][k3][k4][kx]); if (k3)//将三拆成一个单张和一对 UpdMin(cur, F[k1 + 1][k2 + 1][k3 - 1][k4][kx]); if (k4)//将四拆成一个单张和一棒 UpdMin(cur, F[k1 + 1][k2][k3 + 1][k4 - 1][kx]); if (k4)//将四拆成两对 UpdMin(cur, F[k1][k2 + 2][k3][k4 - 1][kx]); } } int main() { int t; scanf("%d%d", &t, &CardCnt); DP(); while (t--) { Ans = INF; memset(IdCnt, 0, sizeof(IdCnt)); for (int i = 1; i <= CardCnt; i++) { int id, color; scanf("%d%d", &id, &color); id = id == 1 ? 12 : id == 2 ? 13 : id == 0 ? 0 : id - 2; IdCnt[id]++; } DoShunzi(0, 0, 0, 0); printf("%d\n", Ans); } return 0; }