luogu1979 华容道
题目大意
小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次。于是,他想到用编程来完成华容道:给定一种局面,华容道是否根本就无法完成,如果能完成,最少需要多少时间。
小 B 玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的:
- 在一个 n*m 棋盘上有 n*m 个格子,其中有且只有一个格子是空白的,其余 n*m-1个格子上每个格子上有一个棋子,每个棋子的大小都是 1*1 的;
- 有些棋子是固定的,有些棋子则是可以移动的;
- 任何与空白的格子相邻(有公共的边)的格子上的棋子都可以移动到空白格子上。 游戏的目的是把某个指定位置可以活动的棋子移动到目标位置。
给定一个棋盘,游戏可以玩 q 次,当然,每次棋盘上固定的格子是不会变的,但是棋盘上空白的格子的初始位置、指定的可移动的棋子的初始位置和目标位置却可能不同。第 i 次玩的时候,空白的格子在第 EX_i 行第 EY_i 列,指定的可移动棋子的初始位置为第 SX_i 行第 SY_i 列,目标位置为第 TX_i 行第 TY_i 列。
假设小 B 每秒钟能进行一次移动棋子的操作,而其他操作的时间都可以忽略不计。请你告诉小 B 每一次游戏所需要的最少时间,或者告诉他不可能完成游戏。
题解
最简单的方法莫过于让空格瞎走,此法能得到70分(当初模拟时太过于紧张只想得那30分,数组开小了。。。记住,数组够,就开大)。
我们想到,要想让移动过的控制的棋子向相邻的格子$q$动,空格必须先到达$q$。移动的时间有多长呢?因为规定了控制的棋子移动过,故之间空格一定在控制的棋子的另一个相邻格子$p$中,空格所要移动的距离便是从$p$到$q$避开棋子所在位置的最短路径长度$d$。也就是说,我们用控制棋子的位置和空格的位置作为状态(棋子移动过,故空格必定与控制棋子相邻,故可以用一条连接两个格子对应节点的有向边来表示),表示空格移动一步的两个状态间的转移权值为$d+1$。在一个新图中,把状态作为状态节点,转移为状态边,虚拟一个状态起始点向所有to节点为控制节点的边对应的状态节点连一条空格初始位置到该边from点的最短距离的状态边,所有to节点为终止节点的边对应的状态节点与虚拟终止节点连一条边权为0的状态边,跑一遍Dijkstra即可。
#include <cstdio> #include <cstring> #include <algorithm> #include <queue> using namespace std; const int MAX_ROW = 35, MAX_COL = 35, INF = 0x3f3f3f3f; bool IsWall[MAX_ROW][MAX_COL]; int TotRow, TotCol; int StComRow, StComCol, StEmpRow, StEmpCol, TarComRow, TarComCol; struct SPGraph//shortest path { static const int MAX_NODE = MAX_ROW * MAX_COL * 4; static const int MAX_EDGE = MAX_ROW * MAX_COL * 16; struct Node; struct Edge; struct Node { Edge *Head; int Dist; bool Done; }_nodes[MAX_NODE], *Start; int TotNode; struct Edge { Node *To, *From; Edge *Next; int Weight; }_edges[MAX_EDGE]; int _eCount; struct HeapNode { Node *Cur; int Dist; HeapNode(Node *cur, int dist):Cur(cur),Dist(dist){} bool operator < (const HeapNode& a) const { return Dist > a.Dist; } }; void Init(int n, int s) { TotNode = n; Start = _nodes + s; } void AddEdge(int u, int v, int w) { Edge *e = _edges + ++_eCount; e->To = _nodes + v; e->From = _nodes + u; e->Weight = w; e->Next = _nodes[u].Head; _nodes[u].Head = e; } void PopEdge() { Edge *e = _edges + _eCount; Edge **next = &e->From->Head; while (true) { if (*next == e) { *next = e->Next; _eCount--; return; } else next = &(*next)->Next; } } void Dijkstra() { static priority_queue<HeapNode> q; for (int i = 1; i <= TotNode; i++) { _nodes[i].Dist = INF; _nodes[i].Done = false; } Start->Dist = 0; q.push(HeapNode(Start, 0)); while (!q.empty()) { HeapNode curHeapNode = q.top(); q.pop(); Node *cur = curHeapNode.Cur; if (cur->Done) continue; cur->Done = true; for (Edge *e = cur->Head; e; e = e->Next) { if (cur->Dist + e->Weight < e->To->Dist) { e->To->Dist = cur->Dist + e->Weight; q.push(HeapNode(e->To, e->To->Dist)); } } } } }s; struct OrgGraph { static const int MAX_EDGE = MAX_ROW * MAX_COL * 4; struct Node; struct Edge; struct Node { Edge *Head; int Dist; int Row, Col; }_nodes[MAX_ROW][MAX_COL]; struct Edge { Node *To, *From; Edge *Next; }_edges[MAX_EDGE]; int _eCount; void AddEdge(int row1, int col1, int row2, int col2) { Node *from = _nodes[row1] + col1, *to = _nodes[row2] + col2; Edge *e = _edges + ++_eCount; e->To = to; e->From = from; e->Next = from->Head; from->Head = e; } void GetDist_Bfs(Node *start, Node *skip) { static queue<Node*> q; while (!q.empty()) q.pop(); for (int row = 1; row <= TotRow; row++) for (int col = 1; col <= TotCol; col++) _nodes[row][col].Dist = -1; start->Dist = 0; q.push(start); while (!q.empty()) { Node *cur = q.front(); q.pop(); for (Edge *e = cur->Head; e; e = e->Next) { if (e->To == skip) continue; if (e->To->Dist >= 0) continue; e->To->Dist = cur->Dist + 1; q.push(e->To); } } } }g; void BuildG() { for (int row = 1; row <= TotRow; row++) for (int col = 1; col <= TotCol; col++) g._nodes[row][col].Row = row, g._nodes[row][col].Col = col; const int Dir[4][2] = { {1, 0}, {0, 1}, {-1, 0}, {0, -1} }; for (int row = 1; row <= TotRow; row++) for (int col = 1; col <= TotCol; col++) { if (IsWall[row][col]) continue; for (int i = 0; i < 4; i++) { int row1 = row + Dir[i][0], col1 = col + Dir[i][1]; if (IsWall[row1][col1]) continue; g.AddEdge(row, col, row1, col1); } } } void BuildS() { s.Init(g._eCount + 2, g._eCount + 1); for (int i = 1; i <= g._eCount; i++) { OrgGraph::Edge *eCur = g._edges + i; g.GetDist_Bfs(eCur->From, eCur->To); for (OrgGraph::Edge *e = eCur->To->Head; e; e = e->Next) { if (e->To->Dist == -1) continue; s.AddEdge(eCur - g._edges, e - g._edges, e->To->Dist + 1); } } } int GetAns() { int cnt = 0; OrgGraph::Node *StCom = g._nodes[StComRow] + StComCol; OrgGraph::Node *StEmp = g._nodes[StEmpRow] + StEmpCol; OrgGraph::Node *TarCom = g._nodes[TarComRow] + TarComCol; if (StCom == TarCom) return 0; g.GetDist_Bfs(StEmp, StCom); for (OrgGraph::Edge *e1 = StCom->Head; e1; e1 = e1->Next) for (OrgGraph::Edge *e2 = e1->To->Head; e2; e2 = e2->Next) { if (e2->To != StCom) continue; if (e2->From->Dist == -1) continue; s.AddEdge(g._eCount + 1, e2 - g._edges, e2->From->Dist); cnt++; } for (OrgGraph::Edge *e1 = TarCom->Head; e1; e1 = e1->Next) for (OrgGraph::Edge *e2 = e1->To->Head; e2; e2 = e2->Next) { if (e2->To != TarCom) continue; s.AddEdge(e2 - g._edges, g._eCount + 2, 0); cnt++; } s.Dijkstra(); while (cnt--) s.PopEdge(); int ans = s._nodes[g._eCount + 2].Dist; if (ans == INF) ans = -1; return ans; } int main() { memset(IsWall, true, sizeof(IsWall)); int qCnt; scanf("%d%d%d", &TotRow, &TotCol, &qCnt); for (int row = 1; row <= TotRow; row++) for (int col = 1; col <= TotCol; col++) { int x; scanf("%d", &x); IsWall[row][col] = !x; } BuildG(); BuildS(); while (qCnt--) { scanf("%d%d%d%d%d%d", &StEmpRow, &StEmpCol, &StComRow, &StComCol, &TarComRow, &TarComCol); printf("%d\n", GetAns()); } return 0; }