Tensorflow2.0学习-基础分类 (二)
上一章是对MNIST的手写数字分类,这次对Fashion MNIST进行分类,基本都一样的,只不过换了一个数据库,还是用fit
函数进行训练,fit
对规整的数据集,训练还是蛮方便的。官方教程
服装图像分类
引包
多了一个matplotlib
包,就是画图用的。
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
数据准备
这次是Fashion MNIST,其实都一样,一个图给一个标签。图嘛,还是将其缩小至0-1之间
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images = train_images / 255.0
test_images = test_images / 255.0
模型准备
还是若干简单层的堆叠,优化器和损失函数安排上。
model = keras.Sequential([
# 格式化数据
keras.layers.Flatten(input_shape=(28, 28)),
# 128个结点
keras.layers.Dense(128, activation='relu'),
# 10个结点
keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
跑起来
跑10次
model.fit(train_images, train_labels, epochs=10)
# 准确率
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
测试
跑完模型可以对数据进行测试,加入Softmax
将 logits
转换成更容易理解的概率。
# 对整体
probability_model = tf.keras.Sequential([model,
tf.keras.layers.Softmax()])
predictions = probability_model.predict(test_images)
# 对单个数据
# Grab an image from the test dataset.
img = test_images[1]
# Add the image to a batch where it's the only member.
img = (np.expand_dims(img,0))
predictions_single = probability_model.predict(img)
print(predictions_single)
np.argmax(predictions_single[0])
整体代码
结果
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images = train_images / 255.0
test_images = test_images / 255.0
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10)
# 准确率
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\nTest accuracy:', test_acc)
Epoch 1/10
1875/1875 [==============================] - 1s 542us/step - loss: 0.5032 - accuracy: 0.8245
Epoch 2/10
1875/1875 [==============================] - 1s 544us/step - loss: 0.3774 - accuracy: 0.8630
Epoch 3/10
1875/1875 [==============================] - 1s 555us/step - loss: 0.3375 - accuracy: 0.8772
Epoch 4/10
1875/1875 [==============================] - 1s 539us/step - loss: 0.3139 - accuracy: 0.8850
Epoch 5/10
1875/1875 [==============================] - 1s 539us/step - loss: 0.2970 - accuracy: 0.8911
Epoch 6/10
1875/1875 [==============================] - 1s 541us/step - loss: 0.2819 - accuracy: 0.8957
Epoch 7/10
1875/1875 [==============================] - 1s 539us/step - loss: 0.2698 - accuracy: 0.8987
Epoch 8/10
1875/1875 [==============================] - 1s 547us/step - loss: 0.2585 - accuracy: 0.9036
Epoch 9/10
1875/1875 [==============================] - 1s 549us/step - loss: 0.2478 - accuracy: 0.9079
Epoch 10/10
1875/1875 [==============================] - 1s 545us/step - loss: 0.2391 - accuracy: 0.9112
Test accuracy: 0.8848000168800354
基本文本分类
引包
import tensorflow as tf
from tensorflow import keras
import numpy as np
print(tf.__version__)
数据准备
这次的数据是IMDB 数据集,就是电影评论,判别积极还是消极,二分类。
该数据集是经过预处理的:每个样本都是一个表示影评中词汇的整数数组。每个标签都是一个值为 0 或 1 的整数值,其中 0 代表消极评论,1代表积极评论。
文本相对于图像的挑战就是,文本都不是等长的,需要进行处理。就是按照最长的为标准,剩下的数据填充就好了,这样就有了max_length * num_reviews
。
imdb = keras.datasets.imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
# 填充数组
train_data = keras.preprocessing.sequence.pad_sequences(train_data,
value=0,
padding='post',
maxlen=256)
test_data = keras.preprocessing.sequence.pad_sequences(test_data,
value=0,
padding='post',
maxlen=256)
# 准备验证数据
x_val = train_data[:10000]
partial_x_train = train_data[10000:]
y_val = train_labels[:10000]
partial_y_train = train_labels[10000:]
执行完代码后,train_data
的格式就变成(25000, 256)
,数据规整了,就又可以送入网络了
模型准备
这里先将文本数据嵌入处理,这么做增加了维度,也能让模型效果更好一点。
然后就是池化
最后全连接
# 输入形状是用于电影评论的词汇数目(10,000 词)
vocab_size = 10000
model = keras.Sequential()
model.add(keras.layers.Embedding(vocab_size, 16))
model.add(keras.layers.GlobalAveragePooling1D())
model.add(keras.layers.Dense(16, activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))
# 打印模型
# model.summary()
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
跑起来
这里除了训练集还有验证集,验证集就是帮助我们选择哪一个模型效果最好。
verbose:日志显示
verbose = 0 为不在标准输出流输出日志信息
verbose = 1 为输出进度条记录
verbose = 2 为每个epoch输出一行记录
history = model.fit(partial_x_train,
partial_y_train,
epochs=40,
batch_size=512,
validation_data=(x_val, y_val),
verbose=1)
# 看下测试集
results = model.evaluate(test_data, test_labels, verbose=2)
print(results)
完整代码
import tensorflow as tf
from tensorflow import keras
import numpy as np
imdb = keras.datasets.imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
train_data = keras.preprocessing.sequence.pad_sequences(train_data,
value=0,
padding='post',
maxlen=256)
test_data = keras.preprocessing.sequence.pad_sequences(test_data,
value=0,
padding='post',
maxlen=256)
# 输入形状是用于电影评论的词汇数目(10,000 词)
vocab_size = 10000
model = keras.Sequential()
model.add(keras.layers.Embedding(vocab_size, 16))
model.add(keras.layers.GlobalAveragePooling1D())
model.add(keras.layers.Dense(16, activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
x_val = train_data[:10000]
partial_x_train = train_data[10000:]
y_val = train_labels[:10000]
partial_y_train = train_labels[10000:]
history = model.fit(partial_x_train,
partial_y_train,
epochs=40,
batch_size=512,
validation_data=(x_val, y_val),
verbose=1)
results = model.evaluate(test_data, test_labels, verbose=2)
print(results)
history_dict = history.history
history_dict.keys()
import matplotlib.pyplot as plt
acc = history_dict['accuracy']
val_acc = history_dict['val_accuracy']
loss = history_dict['loss']
val_loss = history_dict['val_loss']
epochs = range(1, len(acc) + 1)
# “bo”代表 "蓝点"
plt.plot(epochs, loss, 'bo', label='Training loss')
# b代表“蓝色实线”
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
plt.clf() # 清除数字
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
本文来自博客园,作者:赫凯,转载请注明原文链接:https://www.cnblogs.com/heKaiii/p/17137420.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南